文档详情

广东省深圳市南山外国语学校(集团)高级中学2024-2025学年高二下学期3月月考数学试题.docx

发布:2025-03-20约5.01千字共15页下载文档
文本预览下载声明

试卷第=page11页,共=sectionpages33页

试卷第=page11页,共=sectionpages33页

广东省深圳市南山外国语学校(集团)高级中学2024-2025学年高二下学期3月月考数学试题

学校:___________姓名:___________班级:___________考号:___________

一、单选题

1.下列结论中,正确的是(???)

A. B.

C. D.

2.设为可导函数,且满足,则曲线在点处的切线的斜率是(???)

A.6 B.2 C.3 D.

3.已知函数,则(???)

A. B. C. D.

4.函数在上的图象大致为()

A. B.

C. D.

5.已知为R上的可导函数,其导函数为,且对于任意的,均有,则(????)

A.,

B.,

C.,

D.,

6.2023年10月23日,杭州亚运会历时16天圆满结束.亚运会结束后,甲?乙?丙?丁?戊五名同学排成一排合影留念,其中甲?乙均不能站左端,且甲?丙必须相邻,则不同的站法共有(????)

A.18种 B.24种 C.30种 D.36种

7.已知函数在区间上单调递减,则实数a的取值范围为(????)

A. B.

C. D.

8.已知函数,,若函数有5个零点,则a的取值范围为(???)

A. B. C. D.

二、多选题

9.已知函数的导函数的图象如图所示,下列结论中正确的是(????)

A.是函数的极小值点

B.是函数的极小值点

C.函数在区间上单调递增

D.函数在处切线的斜率小于零

10.现分配甲、乙、丙三名临床医学检验专家到A,B,C,D,E五家医院进行核酸检测指导,每名专家只能选择一家医院,且允许多人选择同一家医院,则(????)

A.所有可能的安排方法有125种

B.若A医院必须有专家去,则不同的安排方法有61种

C.若专家甲必须去A医院,则不同的安排方法有16种

D.若三名专家所选医院各不相同,则不同的安排方法有10种

11.已知函数,,则下列说法正确的是(????)

A.当时,有唯一零点

B.当时,是减函数

C.若只有一个极值点,则或

D.当时,对任意实数,总存在实数,使得

三、填空题

12.已知定义在上的函数,则曲线在点处的切线方程是.

13.甲、乙等6位同学去三个社区参加义务劳动,每个社区安排2位同学,每位同学只去一个社区,则甲、乙到同一社区的不同安排方案共有.

14.设函数,若存在,使得在上的值域为,则实数的取值范围为

四、解答题

15.用五个数字,问:

(1)可以组成多少个无重复数字的四位密码?

(2)可以组成多少个无重复数字的四位数?

(3)可以组成多少个十位数字比个位数字大的无重复数字的四位偶数?

16.某班级在迎新春活动中进行抽卡活动,不透明的卡箱中共有“福”“迎”“春”卡各两张,“龙”卡三张.每个学生从卡箱中随机抽取4张卡片,其中抽到“龙”卡获得2分,抽到其他卡均获得1分,若抽中“福”“龙”“迎”“春”张卡片,则额外获得2分.

(1)求学生甲抽到“福”“龙”“迎”“春”4张卡片的不同的抽法种数;

(2)求学生乙最终获得分的不同的抽法种数.

17.已知函数.

(1)写出函数的单调区间;

(2)求函数在上的最大值、最小值.

18.已知函数.

(1)讨论函数的单调性;

(2)若恒成立,求正实数的取值范围.

19.已知函数在处取得极值

(1)求实数的值

(2)求证:

(3)证明:对于任意的正整数,不等式都成立.

答案第=page11页,共=sectionpages22页

答案第=page11页,共=sectionpages22页

《广东省深圳市南山外国语学校(集团)高级中学2024-2025学年高二下学期3月月考数学试题》参考答案

题号

1

2

3

4

5

6

7

8

9

10

答案

D

A

A

A

A

C

C

D

BC

AB

题号

11

答案

ABD

1.D

【分析】利用基本初等函数求导公式,复合函数求导公式以及导数的运算法则的进行求导,逐项分析即可.

【详解】对于A,常数的导数等于0,故A错误;

对于B,,故B错误;

对于C,,故C错误;

对于D,,故D正确.

故选:D.

2.A

【分析】根据导数的定义,结合导数的几何意义求解即可.

【详解】由题意,,

即,故,即曲线在点处的切线的斜率是6.

故选:A

3.A

【分析】根据条件,利用基本函数的导数与导数的运算法则,即可求解.

【详解】因为,则,

所以,解得,

故选:A.

4.A

【分析】根据函数的性质,判断函数图象的形状.

【详解】因为,所以,

所以函数为偶函数,图象关于轴对称

显示全部
相似文档