2021年九年级数学中考复习——方程专题:一元二次方程实际应用(一).docx
文本预览下载声明
2021年九年级数学中考复习——方程专题:一元二次方程实际应用(一)
1.某网店销售一款羽绒服,每件售价900元,每天可卖2件.为迎接“双11”抢购活动,该网店决定降价销售,市场调查反映:售价每降低50元,每天可多卖1件.已知该款羽绒服每件进价400元,设该款羽绒服每件售价x元,每天的销售量为y件.
(1)求y与x之间的函数关系式;
(2)求网店每天盈利1600元,且销售量最大时,该款羽绒服的售价.
2.万州物产丰富,新田水柿子香甜多汁回味无穷,深秋时节正是品尝新田水柿子的最佳时机.某水果摊贩看准商机,购进并销售新田水柿子和外地柿饼,11月中旬,新田水柿子和外地柿饼的销售单价分别为6元/千克、20元/千克,水柿子比柿饼多售出150千克,两种柿子的销售总金额为10000元.
(1)11月中旬新田水柿子和外地柿饼各销售了多少千克?
(2)11月下旬新田水柿子开始过季,其他水果开始上市,该水果摊贩准备将外地柿饼的销售单价在11中旬的基础上下调a%,新田水柿子的单价在11月中旬的基础上上调a%,价格的变动导致销售量的变化,其中,预计外地柿饼的销售量将在11中旬的基础上上涨a%,新田水柿子的销售量在11月中旬的基础上减少a%,最终预计11月下旬水果摊两种柿子的销售总金额将与中旬持平,求a的值.
3.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.
(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第 档次产品;
(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?
4.口罩在疫情防控中起着非常重要的防护作用,主要是保护呼吸道,预防呼吸道飞沫的传播,减少病毒或细菌的侵袭,预防感染的作用,同时还可以预防有害物质的入侵,极大地减少交叉感染的几率.某药店新购进一批口罩进行销售,平均每天可售出500个,每个盈利0.6元,为了让利于民,药店决定采取适当的降价措施,根据以往的经验,如果每个口眾的售价每降价0.1元,那么平均每天多售出100个.
(1)若每个口罩的售价降价0.2元,则平均每天可售出 个;若每个口罩的售价降价x元,则平均每天可售出 个;
(2)该药店要想通过销售这种口罩,每天盈利达到240元,每个口罩的售价应降价多少元?
5.某水果店批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售将减少20千克.
(1)现要保证每天盈利5520元,同时又要让顾客得到实惠,那么每千克应涨价多少元?
(2)要使每天获利不少于6000元,求涨价x的范围.
6.某公司一月份营业额为10万元,若二、三月份增长率相同,到三月份时,营业额达到12.1万元.求二、三月份的平均增长率.
7.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度为10m)围成中间隔有一道篱笆的长方形花圃,如果要围成面积为45m2的花圃,求AB的长度.
8.如图,某小区有一块长为22.5m,宽为18m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为270m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?
9.如图,某中学准备在校园里利用围墙的一段MN,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌40m长的墙的材料.
(1)当AB长度是多少时,矩形花园的面积为150m2;
(2)能否围成矩形花园面积为210m2,为什么?
10.2020年12月,宝应高铁站即将开通运营,宝应将迈入高铁时代.建设部门打算对高铁站广场前一块长为20m,宽为8m的矩形空地进行绿化,计划在其中间修建两块相同的矩形绿地(图中阴影部分).
(1)若他们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道,问人行通道的宽度是多少米?
(2)为使修建两块相同的矩形绿地更美一点,设计部门打算修建的两块相同的矩形绿地与原矩形空地相似,两块绿地之间及周边仍然留有宽度相等的人行通道,问人行通道的宽度应改为多少米?
参考答案
1.解:(1)依题意,得:y=2+=20﹣.
(2)依题意,得:(x﹣400)(20﹣)=1600,
解得:x1=600,x2=800,
∵销售量最大,
∴x=600.
答:当每件售价定为600元时,该网店每天盈利1600元.
2.(1)设新田水柿子销售了x千克,外地柿饼销售了y千克,由题意得:
解得
答:新田水柿子销售了500千克,外地柿饼销售了350千克;
(2)由题意得,
令a%=t,则原方程整理得5t2﹣t=0,
显示全部