文档详情

苏教版七年级数学全册知识点总结案例.doc

发布:2017-06-18约8.92千字共13页下载文档
文本预览下载声明
苏科版数学知识点 第二章:有理数 一、实数与数轴 1、整数分为正整数0和负整数 分数:可以写成两个整数之比的不是整数的数,叫做分数。 分数都可以转化为有限小数或循环小数。反之,有限小数或循环小数都可以转化为分数。 3、有理数: 5、实数:有理数和无理数统称为实数。 6、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。 7、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。 二、绝对值与相反数 8、绝对值:在数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。 设数轴上原点为O,点A表示的数为a,则, 设数轴上点A表示的数为a,点B表示的数为b,则 9、一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值为0. 反过来,绝对值等于它本身的数为非负数(正数或0),绝对值等于它的相反数为非正数(负数或0). 相反数:符号不同,绝对值相等的两个数互为相反数。0的相反数是0. 在数轴上互为相反数的两个数表示的点,分居在原点两侧,并且到原点的距离相等。 相反数等于本身的数只有0. 在一个数前面添上“+”号还表示这个数,在一个数前面添上“—”号,就表示求这个数的相反数。 二、实数大小的比较 11、在数轴上表示两个数,右边的数总比左边的数大。 12、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。 三、实数的运算 13、加法: (1)同号两数相加,取原来的符号,并把它们的绝对值相加; (2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。(3)任何数与0相加仍得这个数。 减法:减去一个数等于加上这个数的相反数。 15、加减法运算统一为加法后,可以省略加号。也可以使用加法交换律和结合律,任意交换加数的位置,任意把两个数相加,不过移动位置时一定要连同加数的符号一起移动。 16、乘法: (1)两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。 (2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。 (3)乘法可使用乘法交换律、乘法结合律、乘法分配律。 4、除法: (1)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何不等于0的数都等于0, (2)除以一个数等于乘以这个数的倒数。 (3)乘积为1的两个数互为倒数。0没有倒数,倒数等于本身的数是±1. (4)0不能做除数,也不能做分母。 17、乘方:求相同因数的乘积的运算,叫作乘方。相同因数叫作底数,因数的个数叫作指数,乘方的结果叫作幂。 平方等于本身的是0或1, 立方等于本身的数是0,±1. 平方等于64的数是±8. 立方等于64的数是4。 正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数。 实数的运算顺序:先算乘方,再算乘除,最后算加减,有括号先算括号里的。 无论何种运算,都要注意先定符号后运算。 科学记数法:设>10,则N= a×(其中1≤<10,n为正整数,n=N的整数位数—1)。 第二章 有理数 整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。   任何一个有理数都可以在数轴上表示。   无限不循环小数和开平方开不尽的数叫作无理数 ,比如π,3.1415926535897932384626......   而有理数恰恰与它相反,整数和分数统称为有理数   其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。   有理数分为正数、0、负数   正数又分为正整数、正分数   负数又分为负整数、负分数   如3,-98.11,5…,7/22都是有理数。   全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。   ①加法的交换律 a+b=b+a;   ②加法的结合律 a+(b+c)=(a+b)+c;   ③存在数0,使 0+a=a+0=a;   ④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0;   ⑤乘法的交换律 ab=ba;   ⑥乘法的结合律 a(bc)=(ab)c;   ⑦分配律 a(b+c)=ab+ac;   ⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a;   ⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。   ⑩0a=0 文字解释:一个数乘0还等于0。   0的绝对值还是0. 有理数
显示全部
相似文档