数学联合学校计算机科学入学说明.pdf
SOLUTIONSFORADMISSIONSTESTIN
MATHEMATICS,JOINTSCHOOLSANDCOMPUTERSCIENCE
WEDNESDAY3NOVEMBER2010
MarkScheme:
EachpartofQuestion1isworthfourmarkswhichareawardedsolelyforthecorrectanswer.
EachofQuestions2-7isworth15marks
QUESTION1:
2
A.Theliney=kxintersectstheparabolay=(x−1)whentheequation
22
(x−1)=kx⇐⇒x−(k+2)x+1=0
2
hasrealsolutions.Thisquadraticequationhasdiscrimant(k+2)−4whichisnonnegativewhen
k+22,i.e.k0ork+2−2,i.e.k−4.
Theansweris(c).
B.Theoddtermsinthesequence
1111
1,1,2,,4,,8,,16,,...,
24816
fn−1
romamongstthefirst2nterms,are1,2,4,...,2andtherelevanteventermsaretheirreciprocals.
So,recognisingtheseasgeometricseries,weneedtosum
n−11++···+11
1+2+4+...+2+1+
242n−1
n−n
1(2−1)1(2−1)
=+
(2−1)(1/2−1)
n1−n
=(2−1)+2−2
n1−n
=2+1−2.
Theansweris(a).
C.Ifxsolvestheequation
22
sinx+3sinxcosx+2cosx=0
2
thencosx=0,sothatwecandividebycosxtofind
2
tanx+3tanx+2=0.
Th