泛函分析习题集.pdf
文本预览下载声明
§1.0.1
1). ℄
(a). A ∩ (B\C) = (A ∩ B)\(A ∩ C);
(b). (A\B)\C = A\(B ∪ C);
(c). A\(B\C) = (A\B) ∪ (A ∩ C);
(d). (A ∪ B)\C = (A\C) ∪ (B\C).
2). f (g h) = (f g) h.
3). X,Y F : X → Y G : Y → X
G F = IX , F G = IY .
§1.0.2
1). ℄
(a). (a, b) (0, 1)
(b). R (−1, 1).
2). R
3). f (x), g(x) A
(a). supx∈A {f (x) + g (x)} ≤ supx∈A f (x) + supx∈A g (x);
(b). supx∈A {f (x) + g (x)} ≥ supx∈A f (x) + infx∈A g (x);
(c). infx∈A {f (x) + g (x)} ≥ infx∈A f (x) + infx∈A g (x);
(d). infx∈A {−f (x)} = − supx∈A f (x).
§1.0.3
1). ℓ∞ ℄
∞
ℓ = {xn } sup |xn | ∞ .
n≥1
ℓ∞ ℓ∞
2). 1 ≤ p ≤ q +∞ ℓp ⊂ ℓq .
2 n
3). Pn [a, b] n + 1 1, t, t , , t Pn [a, b] ℄
2 n
4). P [a, b] , 1, t, t , , t , P [a, b] ℄
5). C [a, b] .
6). X,Y K T : X → Y T
N (T ) = {θ}.
2
3
7). P (x , y ), P (x , y ), P (x , y )
1 1 1 2 2 2 3 3 3
Z = ax + by + c
Z Pk Æ hk , k = 1, 2, 3.
§1.0.4
1). X {xk }n
k=1
n
x − a x
显示全部