指数函数教案.docx
指数函数教案
指数函数教案1
教学目标:
进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题。
教学重点:
用指数函数模型解决实际问题。
教学难点:
指数函数模型的建构。
教学过程:
一、情境创设
1、某工厂今年的年产值为a万元,为了增加产值,今年增加了新产品的研发,预计从明年起,年产值每年递增15%,则明年的产值为__万元,后年的产值为__万元。若设_年后实现产值翻两番,则得方程。
二、数学建构
指数函数是常见的数学模型,也是重要的数学模型,常见于工农业生产,环境治理以及投资理财等
递增的常见模型为=(1+p%)_(p>0);递减的常见模型则为=(1-p%)_(p>0)。
三、数学应用
例1某种放射性物质不断变化为其他,每经过一年,这种物质剩留的质量是原来的84%,写出这种物质的剩留量关于时间的函数关系式。
例2某医药研究所开发一种新药,据检测:如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克),与服药后的时间t(小时)之间近似满足如图曲线,其中OA是线段,曲线ABC是函数=at的图象。试根据图象,求出函数=f(t)的解析式。
例3某位公民按定期三年,年利率为2.70%的方式把5000元存入银行。问三年后这位公民所得利息是多少元?
例4某种储蓄按复利计算利息,若本金为a元,每期利率为r,设存期是_,本利和(本金加上利息)为元。
(1)写出本利和随存期_变化的函数关系式;
(2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和。
(复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息方法)
小结:银行存款往往采用单利计算方式,而分期付款、按揭则采用复利计算。这是因为在存款上,为了减少储户的重复操作给银行带来的工作压力,同时也是为了提高储户的长期存款的积极性,往往定期现年的利息比再次存取定期一年的收益要高;而在分期付款的过程中,由于每次存入的现金存期不一样,故需要采用复利计算方式。比如“本金为a元,每期还b元,每期利率为r”,第一??还款时本息和应为a(1+p%),还款后余额为a(1+p%)-b,第二次还款时本息为(a(1+p%)-b)(1+p%),再还款后余额为(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次还款后余额为a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b。这就是复利计算方式。
例520__~20__年,我国国内生产总值年平均增长7.8%左右。按照这个增长速度,画出从20__年开始我国年国内生产总值随时间变化的图象,并通过图象观察到20__年我国年国内生产总值约为20__年的多少倍(结果取整数)。
练习:
1、(1)一电子元件去年生产某种规格的电子元件a个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年增长p%,试写出此种规格电子元件的年产量随年数变化的函数关系式;
(2)一电子元件去年生产某种规格的电子元件的成本是a元/个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年下降p%,试写出此种规格电子元件的单件成本随年数变化的函数关系式。
2、某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经3小时后,这种细菌可由1个分裂成个。
3、我国工农业总产值计划从20__年到20__年翻两番,设平均每年增长率为_,则得方程。
四、小结:
1、指数函数模型的建立;
2、单利与复利;
3、用图象近似求解。
五、作业:
课本P71—10,16题。指数函数教案2
一、教学目标:
知识与技能:理解指数函数的概念,能够判断指数函数。
过程与方法:通过观察,分析、归纳、总结、自主建构指数函数的概念。领会从特殊到一般的数学思想方法,从而培养学生发现、分析、解决问题的能力。
情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教学重点、难点:
教学重点:指数函数的概念,判断指数函数。教学难点:对底数的分类。
三、学情分析:
学生已经学习了函数的知识,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力。通过教师启发式引导,学生自主探究完成本节课的学习。高一学生的认知水平从形象向抽象、从特殊向一般过