人工智能论文英文版-SMALL MODELS, BIG SUPPORT:A LOCAL LLM FRAMEWORK FOR TEACHER-CENTRIC CONTENT CREATION AND ASSESSMENT USING RAG AND CAG.pdf
SMALLMODELS,BIGSUPPORT:ALOCALLLMFRAMEWORK
FORTEACHER-CENTRICCONTENTCREATIONANDASSESSMENT
USINGRAGANDCAG
ZarreenReza∗AlexanderMazurMichaelT.Dugdale
JACOBBJACOBBJohnAbbottCollege
5Montreal,CanadaMontreal,CanadaMontreal,Canada
2zarreen.reza@jacobb.aialexander.mazur@jacobb.aimichael.dugdale@johnabbott.qc.ca
0
2
RobinRay-Chaudhuri
nJohnAbbottCollege
uMontreal,Canada
J
robin.ray-chaudhuri@johnabbott.qc.ca
6
]ABSTRACT
Y
CWhileLargeLanguageModels(LLMs)areincreasinglyutilizedasstudent-facingeducationalaids,
s.theirpotentialtodirectlysupporteducators,particularlythroughlocallydeployableandcustomizable
copen-sourcesolutions,remainssignificantlyunderexplored.Manyexistingeducationalsolutionsrely
[oncloud-basedinfrastructureorproprietarytools,whicharecostlyandmayraiseprivacyconcerns.
Regulatedindustrieswithlimitedbudgetsrequireaffordable,self-hostedsolutions.Weintroducean
1end-to-end,open-sourceframeworkleveragingsmall(3B-7Bparameters),locallydeployedLLMs
v
5forcustomizedteachingmaterialgenerationandassessment.Oursystemuniquelyincorporates
2aninteractiveloopcrucialforeffectivesmall-modelrefinement,an