文档详情

甘肃省白银市靖远县多校2025届高三下学期5月冲刺联考数学试题.docx

发布:2025-06-09约1.59千字共5页下载文档
文本预览下载声明

2025年普通高等学校招生全国统一考试

数学冲刺卷

本试卷共150分考试时间120分钟

注意事项:

1.答题前,考生务必将自己的姓名?准考证号填写在答题卡上.

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.

3.考试结束后,将本试卷和答题卡一并交回.

一?选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.()

A. B. C. D.

2.若,则()

A. B.

C. D.

3.已知集合,集合,则()

A. B.

C. D.

4.已知向量,且与的夹角为,则实数的值为()

A B. C. D.

5.若,则()

A. B.

C. D.

6.如图,在长方体中,,则异面直线和夹角的余弦值为()

A. B. C. D.

7.暑假期间,甲?乙?丙?丁四名大学生到某科研单位的第一?二?三这三个科室实习,每个科室至少有一人实习,且每人只到一个科室实习.在甲在第一科室实习的条件下,甲与乙不在同一科室实习的概率为()

A. B. C. D.

8.如图,抛物线焦点为,过点且斜率为1的直线交抛物线于两点,线段的中点为,其垂直平分线交轴于点轴于点,则四边形的面积等于()

A.12 B.8 C.6 D.7

二?多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.

9.已知一组样本点组成一个样本,得到的经验回归方程为,且其平均数为.若增加两个样本点和,得到新样本的经验回归方程为,则下列结论正确的有()

A.

B.增加两个样本点后平均数为1.2

C.

D.在新经验回归方程中,当时,的估计值为4.2

10.如图所示,将椭圆绕着坐标原点旋转一定角度,得到“斜椭圆”的方程为,则椭圆的()

A.长半轴长为 B.短半轴长为

C.焦距为4 D.离心率为

11.已知函数,且,则下列结论正确的有()

A.不一定有极值

B.当时,

C.当时,的极小值为0

D.当时,在区间上的最小值为

三?填空题:本题共3小题,每小题5分,共15分.

12.若函数的最小正周期是,则__________.

13.已知数列满足,若,则__________.

14.已知正四棱锥的高为3,侧面与底面所成的角为,球与该正四棱锥的四个侧面及底面都相切,依次在该正四棱锥内放入球,使得球与该正四棱锥的四个侧面均相切,且球与外切,则球的体积为__________,球的表面积为__________.

四?解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.

15.在如图所示的多面体中,平面,且是的中点.

(1)求证:平面平面.

(2)求平面与平面夹角的余弦值.

16.已知的内角的对边分别为,且.

(1)求的值.

(2)已知.

(i)求的值;

(ii)求的面积.

17.已知双曲线的渐近线方程为,且其焦距为.

(1)求双曲线的方程;

(2)若直线与双曲线交于不同的两点,且在由点与构成的三角形中,,求实数的取值范围.

18.已知函数,且曲线在点处的切线方程为.

(1)求实数的值.

(2)当时,证明:当时,

(3)当时,若存在,使得成立,证明:.

19.若数列满足,则称数列为项数列.集合是由所有的项数列构成的,现从集合中任意取出两个数列,记随机变量.

(1)求集合中元素的个数;

(2)求概率的值;

(3)若的期望,求的最小值.

显示全部
相似文档