50 第六章 重点培优课7 子数列、新情境、新定义问题.DOCX
子数列、新情境、新定义问题
题型一数列奇偶项问题
[典例1](2021·新高考Ⅰ卷)已知数列{an}满足a1=1,an+1=a
(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;
(2)求{an}的前20项和.
[听课记录]____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
该递推数列属于数列奇偶项的问题,主要考查综合知识与探究问题能力,解决此类问题的难点在于搞清数列奇数项和偶数项的首项、项数、公差或公比等,特别注意分类讨论等思想在解题中的灵活运用.
[跟进训练]
1.(2023·新高考Ⅱ卷)已知{an}为等差数列,bn=an?6,n为奇数,2an,n为偶数.记Sn,Tn分别为数列{an
(1)求{an}的通项公式;
(2)证明:当n>5时,Tn>Sn.
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
题型二数列增减项问题
[典例2](2024·江苏南京期末)已知数列an满足a1=4,且an+1+an=8n
(1)求数列an
(2)已知bn=2n,在数列an中剔除an与bn的公共项后余下的项按原顺序构成一个新数列cn,求数列c
[听课记录]____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.解决数列中增减项问题的关键是通过阅读理解题意,要弄清楚增加了(减少了)多少项,增加(减少)的项有什么特征.
2.两个等差(比)数列的公共项是等差(比)数列,且公差(比)是两等差(比)数列公差(比)的最小公倍数,一个等差与一个等比数列的公共项,则要通过其项数之间的关系来确定.
[跟进训练]
2.记数列{an}的前n项和为Sn,对任意正整数n,有2Sn=nan,且a2=3.
(1)求数列{an}的通项公式;
(2)对所有正整数m,若ak<2m<ak+1,则在ak和ak+1两项中插入2m,由此得到一个新数列{bn},求{bn}的前40项和.
____________________________________________________________________________________________________________________________