文档详情

重难点解析辽宁省新民市中考数学真题分类(一元一次方程)汇编同步测试试题(含答案解析).docx

发布:2025-05-03约8.2千字共21页下载文档
文本预览下载声明

辽宁省新民市中考数学真题分类(一元一次方程)汇编同步测试

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题16分)

一、单选题(8小题,每小题2分,共计16分)

1、方程3x+2(1-x)=4的解是()

A.x= B.x= C.x=2 D.x=1

2、将方程中分母化为整数,正确的是()

A. B.

C. D.

3、如果方程是关于x的一元一次方程,则n的值为(???????)

A.2 B.4 C.3 D.1

4、初一(1)班有学生60名,其中参加数学小组的有36人,参加英语小组的人数比参加数学小组的人数少5人,并且这两个小组都不参加的人数比两个小组都参加的人数的多2人.则同时参加这两个小组的人数是(???????)

A.16 B.12 C.10 D.8

5、某个体商贩同时售出两件上衣,每件售价为135元,按成本核算,其中一件盈利25%,另一件亏本25%,那么这次经营活动中该商贩(???????)

A.不赔不赚 B.赔18元 C.赚18元 D.赚9元

6、我国元朝朱世杰所著的《算学启蒙》(1299年)记载:良马日行二百四十里,驽马日行一百五十里,驽马现行一十二日,问良马几何追及之.翻译为:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马追上慢马的时间为()

A.12天 B.15天 C.20天 D.24天

7、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有名学生,则依题意所列方程正确的是(???????).

A. B. C. D.

8、有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()

A. B.

C. D.

第Ⅱ卷(非选择题84分)

二、填空题(7小题,每小题2分,共计14分)

1、已知是方程的解,则_______.

2、已知关于x的方程的解为,则a的值为_________.

3、用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”_____个.

4、小红在解关于的一元一次方程时,误将看作,得方程的解为,则原方程的解为________.

5、小马虎在解关于的方程时,误将“”看成了“”,得方程的解为,则原方程的解为__________

6、当x=__________时,3x+1的值与2(3–x)的值互为相反数.

7、学校组织劳动实践活动,组织一组同学把两片草地的草割完已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为_______人.

三、解答题(7小题,每小题10分,共计70分)

1、问题情境:在高邮高铁站上车的小明发现:坐在匀速行驶动车上经过一座大桥时,他从刚上桥到离桥共需要150秒;而从动车车尾上桥开始到车头离桥结束,整列动车完全在挢上的时间是148秒.已知该列动车长为120米,求动车经过的这座大桥的长度.

合作探究:

(1)请补全下列探究过程:小明的思路是设这座大桥的长度为x米,则坐在动车上的小明从刚上桥到离桥的路程为x米,所以动车的平均速度可表示为米/秒;从动车车尾上桥开始到车头离桥结束的路程为(x﹣120)米,所以动车的平均速度还可以表示为米/秒.再根据火车的平均速度不变,可列方程.

(2)小颖认为:也可以设动车的平均速度为v米/秒,列出方程解决问题.请你按照小颖的思路求动车经过的这座大桥的长度.

2、解方程

3、某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.

(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;

(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.

4、有些含绝对值的方程,可以通过讨论去掉绝对值号,转化为一元一次方程求解.

例如:解方程x+2|x|=3.

解:当x≥0时,原方程可化为x+2x=3,解得x=1,符合题意;

当x<0时,原方程可化为x-2x

显示全部
相似文档