安徽省合肥庐阳高级中学2025年高三第二学期期中考试数学试题试卷含解析.doc
安徽省合肥庐阳高级中学2025年高三第二学期期中考试数学试题试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵中,,,当阳马体积的最大值为时,堑堵的外接球的体积为()
A. B. C. D.
2.公比为2的等比数列中存在两项,,满足,则的最小值为()
A. B. C. D.
3.已知单位向量,的夹角为,若向量,,且,则()
A.2 B.2 C.4 D.6
4.要排出高三某班一天中,语文、数学、英语各节,自习课节的功课表,其中上午节,下午节,若要求节语文课必须相邻且节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是()
A. B. C. D.
5.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为()
A.58厘米 B.63厘米 C.69厘米 D.76厘米
6.已知向量,,,若,则()
A. B. C. D.
7.已知集合,则()
A. B. C. D.
8.在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是()
A. B. C. D.
9.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为
A. B. C. D.
10.已知集合,则=
A. B. C. D.
11.已知实数,满足约束条件,则目标函数的最小值为
A. B.
C. D.
12.下列函数中,在区间上单调递减的是()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.某种产品的质量指标值服从正态分布,且.某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为_________.
14.甲、乙两人同时参加公务员考试,甲笔试、面试通过的概率分别为和;乙笔试、面试通过的概率分别为和.若笔试面试都通过才被录取,且甲、乙录取与否相互独立,则该次考试只有一人被录取的概率是__________.
15.甲、乙、丙、丁四人参加冬季滑雪比赛,有两人获奖.在比赛结果揭晓之前,四人的猜测如下表,其中“√”表示猜测某人获奖,“×”表示猜测某人未获奖,而“○”则表示对某人是否获奖未发表意见.已知四个人中有且只有两个人的猜测是正确的,那么两名获奖者是_______.
甲获奖
乙获奖
丙获奖
丁获奖
甲的猜测
√
×
×
√
乙的猜测
×
○
○
√
丙的猜测
×
√
×
√
丁的猜测
○
○
√
×
16.已知是等比数列,且,,则__________,的最大值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设前项积为的数列,(为常数),且是等差数列.
(I)求的值及数列的通项公式;
(Ⅱ)设是数列的前项和,且,求的最小值.
18.(12分)在中,内角的对边分别是,已知.
(1)求角的值;
(2)若,,求的面积.
19.(12分)已知函数.
(1)若,求证:.
(2)讨论函数的极值;
(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由.
20.(12分)已知分别是的内角的对边,且.
(Ⅰ)求.
(Ⅱ)若,,求的面积.
(Ⅲ)在(Ⅱ)的条件下,求的值.
21.(12分)已知圆上有一动点,点的坐标为,四边形为平行四边形,线段的垂直平分线交于点.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)过点作直线与曲线交于两点,点的坐标为,直线与轴分别交于两点,求证:线段的中点为定点,并求出面积的最大值.
22.(10分)的内角,,的对边分别是,,,已知.
(1)求角;
(2)若,,求的面积.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
利用均值不等式可得,即可求得,进而求得外接球的半径,即可求解.
【详解】
由题意易得平面,
所以