2025年吉林省吉林市第一中学高三下学期半期测试数学试题试卷含解析.doc
2025年吉林省吉林市第一中学高三下学期半期测试数学试题试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量,,则向量在向量上的投影是()
A. B. C. D.
2.在棱长为2的正方体ABCD?A1B1C1D1中,P为A1D1的中点,若三棱锥P?ABC的四个顶点都在球O的球面上,则球O的表面积为()
A.12? B. C. D.10?
3.已知函数是上的减函数,当最小时,若函数恰有两个零点,则实数的取值范围是()
A. B.
C. D.
4.已知直线是曲线的切线,则()
A.或1 B.或2 C.或 D.或1
5.已知双曲线C:1(a>0,b>0)的焦距为8,一条渐近线方程为,则C为()
A. B.
C. D.
6.已知,满足条件(为常数),若目标函数的最大值为9,则()
A. B. C. D.
7.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()
A.若,,则 B.若,,则
C.若,,则 D.若,,则
8.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是()
A.2 B.3 C.4 D.1
9.已知定义在上的可导函数满足,若是奇函数,则不等式的解集是()
A. B. C. D.
10.如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是()
A.甲得分的平均数比乙大 B.甲得分的极差比乙大
C.甲得分的方差比乙小 D.甲得分的中位数和乙相等
11.复数满足,则()
A. B. C. D.
12.设等比数列的前项和为,若,则的值为()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若x,y均为正数,且,则的最小值为________.
14.已知向量,,,若,则______.
15.某种产品的质量指标值服从正态分布,且.某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为_________.
16.若展开式的二项式系数之和为64,则展开式各项系数和为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列.
18.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:
试销价格(元)
产品销量(件)
已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.
(1)试判断谁的计算结果正确?
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.
19.(12分)已知抛物线的准线过椭圆C:(a>b>0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4.
(1)求椭圆C的标准方程;
(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.
20.(12分)已知.
(1)解关于x的不等式:;
(2)若的最小值为M,且,求证:.
21.(12分)如图,三棱锥中,,