文档详情

湖南省长沙一中2025届高考总复习小题量基础周周考数学试题含解析.doc

发布:2025-04-28约7.38千字共21页下载文档
文本预览下载声明

湖南省长沙一中2025届高考总复习小题量基础周周考数学试题

注意事项

1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合则()

A. B. C. D.

2.已知抛物线y2=4x的焦点为F,抛物线上任意一点P,且PQ⊥y轴交y轴于点Q,则的最小值为()

A. B. C.l D.1

3.已知非零向量,满足,则“”是“”的()

A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解:

4.设,,则“”是“”的

A.充分而不必要条件 B.必要而不充分条件

C.充要条件 D.既不充分也不必要条件

5.若(1+2ai)i=1-bi,其中a,b∈R,则|a+bi|=().

A. B. C. D.5

6.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,它历史悠久,风格独特,神兽人们喜爱.下图即是一副窗花,是把一个边长为12的大正方形在四个角处都剪去边长为1的小正方形后剩余的部分,然后在剩余部分中的四个角处再剪出边长全为1的一些小正方形.若在这个窗花内部随机取一个点,则该点不落在任何一个小正方形内的概率是()

A. B. C. D.

7.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为

A. B.

C. D.

8.将函数向左平移个单位,得到的图象,则满足()

A.图象关于点对称,在区间上为增函数

B.函数最大值为2,图象关于点对称

C.图象关于直线对称,在上的最小值为1

D.最小正周期为,在有两个根

9.台球是一项国际上广泛流行的高雅室内体育运动,也叫桌球(中国粤港澳地区的叫法)、撞球(中国地区的叫法)控制撞球点、球的旋转等控制母球走位是击球的一项重要技术,一次台球技术表演节目中,在台球桌上,画出如图正方形ABCD,在点E,F处各放一个目标球,表演者先将母球放在点A处,通过击打母球,使其依次撞击点E,F处的目标球,最后停在点C处,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,则该正方形的边长为()

A.50cm B.40cm C.50cm D.20cm

10.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是()

A.至少有一个样本点落在回归直线上

B.若所有样本点都在回归直线上,则变量同的相关系数为1

C.对所有的解释变量(),的值一定与有误差

D.若回归直线的斜率,则变量x与y正相关

11.函数,,则“的图象关于轴对称”是“是奇函数”的()

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

12.已知公差不为0的等差数列的前项的和为,,且成等比数列,则()

A.56 B.72 C.88 D.40

二、填空题:本题共4小题,每小题5分,共20分。

13.在中,内角A,B,C的对边分别是a,b,c,且,,,则_______.

14.某部门全部员工参加一项社会公益活动,按年龄分为三组,其人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,若组中甲、乙二人均被抽到的概率是,则该部门员工总人数为__________.

15.已知函数为奇函数,,且与图象的交点为,,…,,则______.

16.袋中装有两个红球、三个白球,四个黄球,从中任取四个球,则其中三种颜色的球均有的概率为________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)已知函数,,设.

(1)当时,求函数的单调区间;

(2)设方程(其中为常数)的两根分别为,,证明:.

(注:是的导函数)

18.(12分)已知函数.

(1)若,求不等式的解集;

(2)若“,”为假命题,求的取值范围.

19.(12分)已知点到抛物线C:y1=1px准线的距离为1.

(Ⅰ)求C的方程及焦点F的坐标;

(Ⅱ)设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB,分别交x轴于M,N两点,求的值.

20.(12分)已知函数,其中为实常数.

(1)若存在,使得在区间内单调递减,求的取值范围;

(2)当时,设直线

显示全部
相似文档