2025年福建省晋江市四校高三下学期第一次高考模拟数学试题含解析.doc
2025年福建省晋江市四校高三下学期第一次高考模拟数学试题
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数的图象经过点,则函数图象的一条对称轴的方程可以为()
A. B. C. D.
2.是虚数单位,复数在复平面上对应的点位于()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.执行如图所示的程序框图,则输出的值为()
A. B. C. D.
4.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是()
A. B. C. D.
5.圆心为且和轴相切的圆的方程是()
A. B.
C. D.
6.点为的三条中线的交点,且,,则的值为()
A. B. C. D.
7.已知向量,,若,则()
A. B. C.-8 D.8
8.下列与的终边相同的角的表达式中正确的是()
A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)
C.k·360°-315°(k∈Z) D.kπ+(k∈Z)
9.将函数的图象分别向右平移个单位长度与向左平移(0)个单位长度,若所得到的两个图象重合,则的最小值为()
A. B. C. D.
10.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、、元).甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为()
A. B. C. D.
11.已知f(x)=ax2+bx是定义在[a–1,2a]上的偶函数,那么a+b的值是
A. B.
C. D.
12.已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.平行四边形中,,为边上一点(不与重合),将平行四边形沿折起,使五点均在一个球面上,当四棱锥体积最大时,球的表面积为________.
14.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.
15.袋中装有两个红球、三个白球,四个黄球,从中任取四个球,则其中三种颜色的球均有的概率为________.
16.已知点是抛物线上动点,是抛物线的焦点,点的坐标为,则的最小值为______________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知,函数.
(1)若,求的单调递增区间;
(2)若,求的值.
18.(12分)如图,在斜三棱柱中,已知为正三角形,D,E分别是,的中点,平面平面,.
(1)求证:平面;
(2)求证:平面.
19.(12分)已知椭圆的焦距为,斜率为的直线与椭圆交于两点,若线段的中点为,且直线的斜率为.
(1)求椭圆的方程;
(2)若过左焦点斜率为的直线与椭圆交于点为椭圆上一点,且满足,问:是否为定值?若是,求出此定值,若不是,说明理由.
20.(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数.).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线与直线其中的一个交点为,且点极径.极角
(1)求曲线的极坐标方程与点的极坐标;
(2)已知直线的直角坐标方程为,直线与曲线相交于点(异于原点),求的面积.
21.(12分)等差数列的公差为2,分别等于等比数列的第2项,第3项,第4项.
(1)求数列和的通项公式;
(2)若数列满足,求数列的前2020项的和.
22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求曲线C的极坐标方程和直线l的直角坐标方程;
(2)若射线与曲线C交于点A(不同于极点O),与直线l交于点B,求的最大值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.
【详解】
由题可知.
所以
令,
得
令,得
故选:B
本小题主要考查根据三角