常州市“12校合作联盟”2025届高三下综合测试(数学试题文)试题含解析.doc
常州市“12校合作联盟”2025届高三下综合测试(数学试题文)试题
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为()
A.1 B.2 C.3 D.4
2.已知函数,若,则的值等于()
A. B. C. D.
3.若复数(为虚数单位)的实部与虚部相等,则的值为()
A. B. C. D.
4.函数的定义域为()
A. B. C. D.
5.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是()
A. B. C. D.
6.已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,,则的离心率为()
A.2 B. C. D.
7.定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是()
A. B.
C. D.以上情况均有可能
8.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有()
A.17种 B.27种 C.37种 D.47种
9.有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是()
A.8 B.7 C.6 D.4
10.在中,,则()
A. B. C. D.
11.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()
A. B.
C. D.
12.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为()
A.2 B.3 C.4 D.5
二、填空题:本题共4小题,每小题5分,共20分。
13.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金;随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金.若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.
14.已知函数,,若函数有3个不同的零点x1,x2,x3(x1<x2<x3),则的取值范围是_________.
15.在如图所示的三角形数阵中,用表示第行第个数,已知,且当时,每行中的其他各数均等于其“肩膀”上的两个数之和,即,若,则正整数的最小值为______.
16.若将函数的图象沿轴向右平移个单位后所得的图象与的图象关于轴对称,则的最小值为________________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.曲线的极坐标方程为:,曲线的参数方程为其中,为参数,为常数.
(1)写出与的直角坐标方程;
(2)在什么范围内取值时,与有交点.
18.(12分)设函数,().
(1)若曲线在点处的切线方程为,求实数a、m的值;
(2)若对任意恒成立,求实数a的取值范围;
(3)关于x的方程能否有三个不同的实根?证明你的结论.
19.(12分)已知抛物线的准线过椭圆C:(a>b>0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4.
(1)求椭圆C的标准方程;
(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.
20.(12分)已知点和椭圆.直线与椭圆交于不同的两点,.
(1)当时,求的面积;
(2)设直线与椭圆的另一个交点为,当为中点时,求的值.
21.(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名