天津市蓟州区第一中学2024-2025学年高三4月份联考数学试题含解析.doc
天津市蓟州区第一中学2024-2025学年高三4月份联考数学试题
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数在的图像大致为
A. B. C. D.
2.某公园新购进盆锦紫苏、盆虞美人、盆郁金香,盆盆栽,现将这盆盆栽摆成一排,要求郁金香不在两边,任两盆锦紫苏不相邻的摆法共()种
A. B. C. D.
3.已知函数满足:当时,,且对任意,都有,则()
A.0 B.1 C.-1 D.
4.已知是第二象限的角,,则()
A. B. C. D.
5.若均为任意实数,且,则的最小值为()
A. B. C. D.
6.若,则的虚部是
A.3 B. C. D.
7.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为
A. B. C. D.
8.已知集合,,若,则()
A.或 B.或 C.或 D.或
9.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()
A.23 B.21 C.35 D.32
10.已知向量,,则与共线的单位向量为()
A. B.
C.或 D.或
11.已知集合,集合,则等于()
A. B.
C. D.
12.若实数满足的约束条件,则的取值范围是()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.点P是△ABC所在平面内一点且在△ABC内任取一点,则此点取自△PBC内的概率是____
14.棱长为的正四面体与正三棱锥的底面重合,若由它们构成的多面体的顶点均在一球的球面上,则正三棱锥的内切球半径为______.
15.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.
16.如图所示,在正三棱柱中,是的中点,,则异面直线与所成的角为____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线.
(1)求曲线的方程;
(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.
18.(12分)在平面直角坐标系中,已知抛物线的焦点为,准线为,是抛物线上上一点,且点的横坐标为,.
(1)求抛物线的方程;
(2)过点的直线与抛物线交于、两点,过点且与直线垂直的直线与准线交于点,设的中点为,若、、四点共圆,求直线的方程.
19.(12分)在三棱锥S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D为棱AB的中点,SA=2
(I)证明:SD⊥BC;
(II)求直线SD与平面SBC所成角的正弦值.
20.(12分)已知函数.
(1)当时,求不等式的解集;
(2)若的解集包含,求的取值范围.
21.(12分)如图,四棱锥P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,
(Ⅰ)证明;AC⊥BP;
(Ⅱ)求直线AD与平面APC所成角的正弦值.
22.(10分)如图1,在等腰梯形中,两腰,底边,,,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,,分别为,的中点.
(1)证明:平面.
(2)求直线与平面所成角的正弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果.
【详解】
设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B.
本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最