浙江省慈溪市2024-2025学年高三数学试题第五次模拟考试试题含解析.doc
浙江省慈溪市2024-2025学年高三数学试题第五次模拟考试试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是()
A. B. C. D.
2.圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为()
A. B. C. D.
3.如图所示,网格纸上小正方形的边长为,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为()
A. B. C. D.
4.已知双曲线的左、右顶点分别是,双曲线的右焦点为,点在过且垂直于轴的直线上,当的外接圆面积达到最小时,点恰好在双曲线上,则该双曲线的方程为()
A. B.
C. D.
5.已知全集,集合,则()
A. B. C. D.
6.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是()
A. B. C. D.
7.“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为()
A.56383 B.57171 C.59189 D.61242
8.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,若点的横坐标为,则的取值范围是()
A. B. C. D.
9.集合,则集合的真子集的个数是
A.1个 B.3个 C.4个 D.7个
10.已知、,,则下列是等式成立的必要不充分条件的是()
A. B.
C. D.
11.在空间直角坐标系中,四面体各顶点坐标分别为:.假设蚂蚁窝在点,一只蚂蚁从点出发,需要在,上分别任意选择一点留下信息,然后再返回点.那么完成这个工作所需要走的最短路径长度是()
A. B. C. D.
12.执行如图所示的程序框图,输出的结果为()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知为双曲线的左、右焦点,过点作直线与圆相切于点,且与双曲线的右支相交于点,若是上的一个靠近点的三等分点,且,则四边形的面积为_______.
14.若存在直线l与函数及的图象都相切,则实数的最小值为___________.
15.设函数在区间上的值域是,则的取值范围是__________.
16.已知数列中,为其前项和,,,则_________,_________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知.
(1)解关于x的不等式:;
(2)若的最小值为M,且,求证:.
18.(12分)某公司欲投资一新型产品的批量生产,预计该产品的每日生产总成本价格)(单位:万元)是每日产量(单位:吨)的函数:.
(1)求当日产量为吨时的边际成本(即生产过程中一段时间的总成本对该段时间产量的导数);
(2)记每日生产平均成本求证:;
(3)若财团每日注入资金可按数列(单位:亿元)递减,连续注入天,求证:这天的总投入资金大于亿元.
19.(12分)已知函数.
(1)解不等式;
(2)记函数的最小值为,正实数、满足,求证:.
20.(12分)如图,已知椭圆的右焦点为,,为椭圆上的两个动点,周长的最大值为8.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)直线经过,交椭圆于点,,直线与直线的倾斜角互补,且交椭圆于点,,,求证:直线与直线的交点在定直线上.
21.(12分)在中,内角的边长分别为,且.
(1)若,,求的值;
(2)若,且的面积,求和的值.
22.(10分)在数列中,,
(1)求数列的通项公式;
(2)若存在,使得成立,求实数的最小值
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
根据循