文档详情

2024-2025学年上海二中高三质量检测试题(三模)数学试题试卷含解析.doc

发布:2025-04-18约5.95千字共20页下载文档
文本预览下载声明

2024-2025学年上海二中高三质量检测试题(三模)数学试题试卷

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。

4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若直线l不平行于平面α,且l?α,则()

A.α内所有直线与l异面

B.α内只存在有限条直线与l共面

C.α内存在唯一的直线与l平行

D.α内存在无数条直线与l相交

2.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于的偶数可以表示为两个素数的和”(注:如果一个大于的整数除了和自身外无其他正因数,则称这个整数为素数),在不超过的素数中,随机选取个不同的素数、,则的概率是()

A. B. C. D.

3.将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为()

A.6 B.8 C.10 D.12

4.已知是双曲线的左右焦点,过的直线与双曲线的两支分别交于两点(A在右支,B在左支)若为等边三角形,则双曲线的离心率为()

A. B. C. D.

5.已知函数(其中为自然对数的底数)有两个零点,则实数的取值范围是()

A. B.

C. D.

6.下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为()

A. B.

C. D.

7.复数()

A. B. C.0 D.

8.设,其中a,b是实数,则()

A.1 B.2 C. D.

9.为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为()

A.正相关,相关系数的值为

B.负相关,相关系数的值为

C.负相关,相关系数的值为

D.正相关,相关负数的值为

10.已知,,若,则向量在向量方向的投影为()

A. B. C. D.

11.已知函数,且的图象经过第一、二、四象限,则,,的大小关系为()

A. B.

C. D.

12.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为()

A. B. C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.如图,在等腰三角形中,已知,,分别是边上的点,且,其中且,若线段的中点分别为,则的最小值是_____.

14.若曲线(其中常数)在点处的切线的斜率为1,则________.

15.在平面直角坐标系中,双曲线的一条准线与两条渐近线所围成的三角形的面积为______.

16.甲、乙、丙、丁四名同学报名参加淮南文明城市创建志愿服务活动,服务活动共有“走进社区”、“环境监测”、“爱心义演”、“交通宣传”等四个项目,每人限报其中一项,记事件为“4名同学所报项目各不相同”,事件为“只有甲同学一人报走进社区项目”,则的值为______.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)已知椭圆:(),与轴负半轴交于,离心率.

(1)求椭圆的方程;

(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.

18.(12分)以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线的极坐标方程为,是上一动点,,点的轨迹为.

(1)求曲线的极坐标方程,并化为直角坐标方程;

(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程.

19.(12分)已知函数()

(1)函数在点处的切线方程为,求函数的极值;

(2)当时,对于任意,当时,不等式恒成立,求出实数的取值范围.

20.(12分)在△ABC中,角所对的边分别为向量,向量,且.

(1)求角的大小;

(2)求的最大值.

21.(12分)已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极

显示全部
相似文档