文档详情

2025届甘肃省酒泉市重点中学高三复习质量检测试题数学试题含解析.doc

发布:2025-04-22约6.99千字共20页下载文档
文本预览下载声明

2025届甘肃省酒泉市重点中学高三复习质量检测试题数学试题

注意事项:

1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列图形中,不是三棱柱展开图的是()

A. B. C. D.

2.若函数的图象上两点,关于直线的对称点在的图象上,则的取值范围是()

A. B. C. D.

3.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为()

A. B. C. D.

4.已知向量,夹角为,,,则()

A.2 B.4 C. D.

5.平行四边形中,已知,,点、分别满足,,且,则向量在上的投影为()

A.2 B. C. D.

6.如图,在矩形中的曲线分别是,的一部分,,,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则()

A. B. C. D.大小关系不能确定

7.已知的部分图象如图所示,则的表达式是()

A. B.

C. D.

8.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A.y与x具有正的线性相关关系

B.回归直线过样本点的中心(,)

C.若该大学某女生身高增加1cm,则其体重约增加0.85kg

D.若该大学某女生身高为170cm,则可断定其体重比为58.79kg

9.若复数满足,其中为虚数单位,是的共轭复数,则复数()

A. B. C.4 D.5

10.中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是()

A.2或 B.2或 C.或 D.或

11.已知三棱锥且平面,其外接球体积为()

A. B. C. D.

12.已知双曲线的一条渐近线方程为,,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则()

A.9 B.5 C.2或9 D.1或5

二、填空题:本题共4小题,每小题5分,共20分。

13.若函数()的图象与直线相切,则______.

14.如图,已知圆内接四边形ABCD,其中,,,,则__________.

15.三棱锥中,点是斜边上一点.给出下列四个命题:

①若平面,则三棱锥的四个面都是直角三角形;

②若,,,平面,则三棱锥的外接球体积为;

③若,,,在平面上的射影是内心,则三棱锥的体积为2;

④若,,,平面,则直线与平面所成的最大角为.

其中正确命题的序号是__________.(把你认为正确命题的序号都填上)

16.已知函数的部分图象如图所示,则的值为____________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)如图,在三棱柱中,是边长为2的等边三角形,,,.

(1)证明:平面平面;

(2),分别是,的中点,是线段上的动点,若二面角的平面角的大小为,试确定点的位置.

18.(12分)已知,均为正数,且.证明:

(1);

(2).

19.(12分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不低于8.5分,则称该人的幸福度为“很幸福”.

(Ⅰ)求从这18人中随机选取3人,至少有1人是“很幸福”的概率;

(Ⅱ)以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“很幸福”的人数,求的分布列及.

20.(12分)设函数f(x)=|x﹣a|+|x|(a>0).

(1)若不等式f(x)﹣|x|≥4x的解集为{x|x≤1},求实数a的值;

(2)证明:f(x).

21.(12分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所.

(1)求甲、乙、丙三名同学都选高校的概率;

(2)若已知甲同学特别喜欢高校

显示全部
相似文档