文档详情

2024-2025学年云南省红河州高三下学期第二次仿真模拟数学试题含解析.doc

发布:2025-04-18约6.47千字共21页下载文档
文本预览下载声明

2024-2025学年云南省红河州高三下学期第二次仿真模拟数学试题

考生须知:

1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数的共轭复数为()

A. B. C. D.

2.执行如图的程序框图,若输出的结果,则输入的值为()

A. B.

C.3或 D.或

3.已知集合,,若,则的最小值为()

A.1 B.2 C.3 D.4

4.已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则△的内切圆的半径为()

A. B. C. D.

5.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为()

A. B. C. D.

6.已知数列的首项,且,其中,,,下列叙述正确的是()

A.若是等差数列,则一定有 B.若是等比数列,则一定有

C.若不是等差数列,则一定有 D.若不是等比数列,则一定有

7.已知函数,则()

A. B. C. D.

8.已知平面向量,满足且,若对每一个确定的向量,记的最小值为,则当变化时,的最大值为()

A. B. C. D.1

9.已知函数,则函数的图象大致为()

A. B.

C. D.

10.我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是()

A.400米 B.480米

C.520米 D.600米

11.设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是()

A. B.

C. D.

12.已知集合A={y|y},B={x|y=lg(x﹣2x2)},则?R(A∩B)=()

A.[0,) B.(﹣∞,0)∪[,+∞)

C.(0,) D.(﹣∞,0]∪[,+∞)

二、填空题:本题共4小题,每小题5分,共20分。

13.已知“在中,”,类比以上正弦定理,“在三棱锥中,侧棱与平面所成的角为、与平面所成的角为,则________.

14.已知实数满足,则的最小值是______________.

15.(5分)已知函数,则不等式的解集为____________.

16.在一块土地上种植某种农作物,连续5年的产量(单位:吨)分别为9.4,9.7,9.8,10.3,10.8.则该农作物的年平均产量是______吨.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.

(1)求证:平面;

(2)求二面角的正切值.

18.(12分)如图,在平面直角坐标系中,椭圆的离心率为,且过点.

求椭圆的方程;

已知是椭圆的内接三角形,

①若点为椭圆的上顶点,原点为的垂心,求线段的长;

②若原点为的重心,求原点到直线距离的最小值.

19.(12分)某商场为改进服务质量,随机抽取了200名进场购物的顾客进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:

满意

不满意

40

40

80

40

(1)是否有97.5%的把握认为顾客购物体验的满意度与性别有关?

(2)为答谢顾客,该商场对某款价格为100元/件的商品开展促销活动.据统计,在此期间顾客购买该商品的支付情况如下:

支付方式

现金支付

购物卡支付

APP支付

频率

10%

30%

60%

优惠方式

按9折支付

按8折支付

其中有1/3的顾客按4折支付,1/2的顾客按6折支付,1/6的顾客按8折支付

将上述频率作为相应事件发生的概率,记某顾客购买一件该促销商品所支付的金额为,求的分布列和数学期望.

附表及公式:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

20.(12分)已知,,函数的最小值为.

(1)求证:;

(2)若恒成立,求实数的最大值.

21.(12分)如图,在斜三棱柱中,侧

显示全部
相似文档