2025届湖北省华中师范大学第一附属中学高三5月调研测试数学试题试卷含解析.doc
2025届湖北省华中师范大学第一附属中学高三5月调研测试数学试题试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设点是椭圆上的一点,是椭圆的两个焦点,若,则()
A. B. C. D.
2.在中,角所对的边分别为,已知,.当变化时,若存在最大值,则正数的取值范围为
A. B. C. D.
3.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是()
注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.
A.互联网行业从业人员中90后占一半以上
B.互联网行业中从事技术岗位的人数超过总人数的
C.互联网行业中从事运营岗位的人数90后比80前多
D.互联网行业中从事技术岗位的人数90后比80后多
4.集合,,则()
A. B. C. D.
5.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是()
A. B.
C. D.
6.已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,,则球的表面积为()
A. B. C. D.
7.函数的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为()
A. B. C.2 D.
8.已知双曲线的左、右焦点分别为、,抛物线与双曲线有相同的焦点.设为抛物线与双曲线的一个交点,且,则双曲线的离心率为()
A.或 B.或 C.或 D.或
9.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.
由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:
黄赤交角
正切值
0.439
0.444
0.450
0.455
0.461
年代
公元元年
公元前2000年
公元前4000年
公元前6000年
公元前8000年
根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是()
A.公元前2000年到公元元年 B.公元前4000年到公元前2000年
C.公元前6000年到公元前4000年 D.早于公元前6000年
10.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为()
A.②③ B.②③④ C.①④ D.①②③
11.在中,,,,点满足,则等于()
A.10 B.9 C.8 D.7
12.若,则“”的一个充分不必要条件是
A. B.
C.且 D.或
二、填空题:本题共4小题,每小题5分,共20分。
13.已知,为正实数,且,则的最小值为________________.
14.定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个点,,,在半径为的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平面区域的“直径”的最大值是__________.
15.《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,,且,过点分别作于点,于点,连接,则三棱锥的体积的最大值为__________.
16.若正三棱柱的所有棱长均为2,点为侧棱上任意一点,则四棱锥的体积为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知数列为公差为d的等差数列,,,且,,依次成等比数列,.
(1)求数列的前n项和;
(2)若,求数列的前n项和为.
18.(12分)如图1,四边形为直角梯形,,,,,,为线段上一点,满足,为的中点,现将梯形沿折叠(如图2),使平面平面.
(1)求证:平面平面;
(2)能否在线段上找到一点(端点除外)使得直线与平面所成角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.
19.(12分)唐诗是中国文学的瑰宝.为了研究计算机上