2025届湖北省公安县第三中学高三下学期5月模拟考试数学试题.doc
2025届湖北省公安县第三中学高三下学期5月模拟考试数学试题
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为()
A. B. C. D.
2.已知等差数列的前n项和为,,则
A.3 B.4 C.5 D.6
3.已知定义在上的偶函数,当时,,设,则()
A. B. C. D.
4.设等差数列的前项和为,若,则()
A.23 B.25 C.28 D.29
5.设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为()
A. B.
C. D.
6.已知命题p:“”是“”的充要条件;,,则()
A.为真命题 B.为真命题
C.为真命题 D.为假命题
7.已知函数(e为自然对数底数),若关于x的不等式有且只有一个正整数解,则实数m的最大值为()
A. B. C. D.
8.若集合,,则下列结论正确的是()
A. B. C. D.
9.设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是()
A. B.
C. D.
10.设是等差数列,且公差不为零,其前项和为.则“,”是“为递增数列”的()
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
11.已知是函数的极大值点,则的取值范围是
A. B.
C. D.
12.以下关于的命题,正确的是
A.函数在区间上单调递增
B.直线需是函数图象的一条对称轴
C.点是函数图象的一个对称中心
D.将函数图象向左平移需个单位,可得到的图象
二、填空题:本题共4小题,每小题5分,共20分。
13.图(1)是第七届国际数学教育大会(ICME-7)的会徽图案,它是由一串直角三角形演化而成的(如图(2)),其中,则的值是______.
14.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.
15.已知数列的前项满足,则______.
16.函数在的零点个数为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)某公司欲投资一新型产品的批量生产,预计该产品的每日生产总成本价格)(单位:万元)是每日产量(单位:吨)的函数:.
(1)求当日产量为吨时的边际成本(即生产过程中一段时间的总成本对该段时间产量的导数);
(2)记每日生产平均成本求证:;
(3)若财团每日注入资金可按数列(单位:亿元)递减,连续注入天,求证:这天的总投入资金大于亿元.
18.(12分)某商场为改进服务质量,在进场购物的顾客中随机抽取了人进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:
满意
不满意
男
女
是否有的把握认为顾客购物体验的满意度与性别有关?
若在购物体验满意的问卷顾客中按照性别分层抽取了人发放价值元的购物券.若在获得了元购物券的人中随机抽取人赠其纪念品,求获得纪念品的人中仅有人是女顾客的概率.
附表及公式:.
19.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程及直线的直角坐标方程;
(2)求曲线上的点到直线的距离的最大值与最小值.
20.(12分)设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构造数表M,与数表;
记数表M中位于第i行第j列的元素为,其中,(i,j=1,2,3,…).
记数表中位于第i行第j列的元素为,其中(,,).如:,.
(1)设,,请计算,,;
(2)设,,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;
(3)设,,对于整数t,t不属于数表M,求t的最大值.
21.(12分)已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随