2025届南阳六校下学期高三学年第二次月考数学试题理学科试卷含解析.doc
2025届南阳六校下学期高三学年第二次月考数学试题理学科试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i是虚数单位,若,则乘积的值是()
A.-15 B.-3 C.3 D.15
2.函数的部分图象大致是()
A. B.
C. D.
3.单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA1→A1D1→‥,黑蚂蚁爬行的路线是AB→BB1→‥,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN*).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是()
A.1 B. C. D.0
4.已知集合,,,则()
A. B. C. D.
5.已知向量满足,且与的夹角为,则()
A. B. C. D.
6.甲在微信群中发了一个6元“拼手气”红包,被乙?丙?丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是()
A. B. C. D.
7.下列函数中,在区间上为减函数的是()
A. B. C. D.
8.已知,其中是虚数单位,则对应的点的坐标为()
A. B. C. D.
9.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=﹣x﹣2,则()
A. B.f(sin3)<f(cos3)
C. D.f(2020)>f(2019)
10.已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为().
A.432 B.576 C.696 D.960
11.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是
A.10 B.9 C.8 D.7
12.已知集合,,若,则()
A.4 B.-4 C.8 D.-8
二、填空题:本题共4小题,每小题5分,共20分。
13.若实数x,y满足约束条件,则的最大值为________.
14.已知数列的首项,函数在上有唯一零点,则数列|的前项和__________.
15.已知半径为4的球面上有两点A,B,AB=42,球心为O,若球面上的动点C满足二面角C-AB-O的大小为60°
16.二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在正四棱锥中,,点、分别在线段、上,.
(1)若,求证:⊥;
(2)若二面角的大小为,求线段的长.
18.(12分)已知数列满足且
(1)求数列的通项公式;
(2)求数列的前项和.
19.(12分)已知,,分别为内角,,的对边,且.
(1)证明:;
(2)若的面积,,求角.
20.(12分)已知椭圆:()的左、右顶点分别为、,焦距为2,点为椭圆上异于、的点,且直线和的斜率之积为.
(1)求的方程;
(2)设直线与轴的交点为,过坐标原点作交椭圆于点,试探究是否为定值,若是,求出该定值;若不是,请说明理由.
21.(12分)已知函数.
(1)若在处取得极值,求的值;
(2)求在区间上的最小值;
(3)在(1)的条件下,若,求证:当时,恒有成立.
22.(10分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若直线与曲线交于、两点,求的面积.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B
【解析】
,∴,选B.
2.C
【解析】
判断函数的性质,和特殊值的正负,以及值域,逐一排除选项.
【详解】
,函数是奇函数,排除,
时,,时,,排除,
当时,,
时,,排除,
符合条件,故选C.
本题考查了根据函数解析式判断函数图象,属于基础题型,一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项.
3.B
【解析】
根据规则,观察黑蚂蚁与白蚂蚁经过几段后又回到起点,得到每爬1步回到起点,周期为1.计算黑蚂蚁爬完2020段后实质是到达哪个点以及计算白蚂蚁爬完2020段后实质是到达哪个点,即可计算出它们的距离.
【详解】
由题意