2025年河北省邯郸市武安市高三下学期考前数学适应性演练(二)试题.docx
2025年河北省邯郸市武安市高三下学期考前数学适应性演练(二)试题
题号
一
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题(共3题,总计0分)
1.现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是
A.152B.126C.90D.54(2010湖北理数)
2.已知,则在复平面上所对应的复数是.
[答]()
3.已知若二项式:的展开式的第7项为,则的值为 ()
A.- B. C.- D.
评卷人
得分
二、填空题(共15题,总计0分)
4.分解因式:=;
5.若数列成等比数列,则的值为___2____.
6.已知,当时,有极值8,则=.
7.已知与,若两直线垂直,则的值为6
8.将圆面绕直线y=1旋转一周所形成的几何体的体积与该几何体的内
接正方体的体积的比值是.
9.计算:eq\r((3-π)2)=▲.
10.已知是首项为1的等比数列,是的前n项和,且,则数列的前5项和为.
11.若的方差为3,则的方差
为.
12.把编号为1、2、3、4、5的5位运动员排在编号为1、2、3、4、5的5条跑道中,若有且只有两位运动员的编号与其所在跑道编号相同,则不同的排法种数共有___________种.
13.已知p:“eq\b\lc\|\rc\|(\a\vs4\al\co1(1-\f(x-1,3)))≤2”,q:“x2-2x+1-m2≤0(m0)”.若綈p是綈q的必要而不充分条件.则实数m的取值范围是________.
解析:由p可得x的范围:-2≤x≤10,令集合A={x|-2≤x≤10}.q:(x-1)2≤m2,∴1-m≤x≤1+m,
令集合B={x|1-m≤x≤1+m}.
因为綈p是綈q的必要而不充分条件,所以綈q?綈p,且綈p?/綈q.
由于原命题与逆否命题真假性相同,
∴p?q,q?/p,即p是q的充分而不必要条件,即集合AB.
∴1-m≤-2且1+m≥10,又m0,∴m≥9.
14.若平面向量,满足,,且以向量,为邻边的平行四边形的面积为,则与的夹角的取值范围是。(2011年高考浙江卷理科14)
15.已知(是虚数单位),计算_____(其中是的共轭复数).
16.函数(且)的图象恒过点▲.
17.化简
18.设a、b、c表示直线,M表示平面,给出下列命题:
①若a//M,b//M,则a//b;②若bM,a//b,则a//M;
③若a⊥c,b⊥c,则a//b;④若a⊥M,b⊥M,则a//b.其中正确的命题的个数为.
评卷人
得分
三、解答题(共12题,总计0分)
19.
设全集为,集合,.
(1)求如图阴影部分表示的集合;
(2)已知,若,求实数的取值范围.(本小题满分15分)
20.已知⊙:和定点,由⊙外一点向⊙引切线,切点为,且满足.
(1)求实数间满足的等量关系;
(2)求线段长的最小值;
(3)若以为圆心所作的⊙与⊙有公共点,试求半径取最小值时的⊙方程.
21.已知函数f(x)=是奇函数.
(1)求实数a的值;
(2)判断并证明f(x)的单调性;
(3)若对?x∈[0,1],不等式f(x)≤t﹣x恒成立,求实数t的取值范围.
22.求经过点A(-5,2)且在x轴上的截距等于在y轴上截距的2倍的直线的方程。
23.已知抛物线()上一点到其准线的距离为.
(Ⅰ)求与的值;
(Ⅱ)设抛物线上动点的横坐标为(),过点的直线交于另一点,交轴于点(直线的斜率记作).过点作的垂线交于另一点.若恰好是的切线,问是否为定值?若是,求出该定值;若不是,说明理由.
参考答案
(II)方法1:如图1,作OD⊥AB,垂足为D,连结PD,由三垂线定理得,PD⊥AB。
则∠PDO为二面角P—AB—C的平面角的补角。
故二面角P