2024春九年级数学下册第27章相似27.2相似三角形27.2.1平行线分线段成比例教案新版新人教版.doc
Page1
27.2.1相像三角形及平行线分线段成比例
一、教学目标:
学问目标
理解并驾驭相像三角形及平行线分线段成比例的基本领实及其推论,并会敏捷应用。
实力目标
通过应用,培育识图实力和推理论证实力。
情感看法与价值观
(1)、培育学生主动的思索、动手、视察的实力,使学生感悟几何学问在生活中的价值。
(2)、在进行探究的活动过程中发展学生的探究发觉归纳意识并养成合作沟通的习惯。
二、重、难点
重点:平行线分线段成比例定理和推论及其应用。
难点:平行线分线段成比例定理及推论的敏捷应用,平行线分线段成比例定理的变式。
三、教学过程
1、复习设疑,引入新课
内容:老师提问:
什么是成比例线段?
什么是相像多边形?
你能不通过测量快速将一根绳子分成两部分,使得这两部分的比是2:3?
目的:(1)复习成比例线段的内容,回顾上节课通过方格纸探究成比例线段性质的过程。(2)通过一个生活中的实例激发学生探究的欲望。
效果:学生对不通过测量快速将一根绳子分成两部分,使得这两部分的比是2:3,这一问题很感爱好,急迫想要知道解决方法。
2、小组活动,探究定理
探究活动一:
内容:如图(1)小方格的边长都是1,直线a∥b∥c,分别交直线m,n于A1,A2,A3,B1,B2,B3。
计算你有什么发觉?
将b向下平移到如下图2的位置,直线m,n与直线b的交点分别为A2,B2。你在问题(1)中发觉的结论还成立吗?假如将b平移到其他位置呢?
(图2)
(3)在平面上随意作三条平行线,用它们截两条直线,截得的线段成比例吗?
归纳:平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例;
目的:让学生通过视察、度量、计算、揣测、验证、推理与沟通等数学活动,达到对平行线分线段成比例定理的意会、感悟。
效果:学生在以前的学习中,尤其是本章前两节的探究也是通过表格中的多边形来完成的。所以学生有种熟识感,并不感到困难。
议一议:
内容:老师提问:
1.如何理解“对应线段”?
2.平行线分线段成比例定理的符号语言如何表示?
3.“对应线段”成比例都有哪些表达形式?
若a∥b∥c,则。
由比例的性质还可以得到:,,等。
目的:让学生在探究得出结论的基础上,对平行线分线段成比例定理的有进一步的理解。并驾驭定理的符号语言,进一步发展推理实力。
效果:学生从几何直观上很简洁找出“对应线段”。利用比例的性质写出成比例线段时,感觉结论许多,老师这时可以引导总结出成比例线段的特点,那就是都体现了“对应”二字。
探究活动二:
内容:如图3,直线a∥b∥c,分别交直线m,n于A1,A2,A3,B1,B2,B3。过点A1作直线n的平行线,分别交直线b,c于点C2,C3。(如图4),图4中有哪些成比例线段?
(图3)(图4)
推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例。
目的:让学生脱离表格,不通过计算,运用平行四边形的性质推理得出平行线等分线段定理的推论。
效果:学生已经学习过特别四边形的性质与证明,所以很简洁得出A1C2=B1B2,C2C3=B2B3,进而得出推论。而且
目的:加深对平行线分线段成比例定理及其推论的理解,发展学生的应用实力。
效果:经过这一环节的变式应用,学生能够归纳出平行线分线段成比例定理及其推论的本质特征。
探究活动三:
l4l3l2l6ABCDEFMNOl1内容:直线l
l4
l3
l2
l6
A
B
C
D
E
F
M
N
O
l1
思索:当平行线之间的距离相等时,对应线段的比是多少?
2.如何不通过测量