七年级下学期数学知识框架3.doc
文本预览下载声明
七年级下学期数学各章知识梳理
第九章 不等式与不等式组
一、知识结构图
设未知数,列不等式(组)
解
不
等
式
组
检验
二、知识定义
不等式:一般地,用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。
不等式的解:使不等式成立的未知数的值,叫做不等式的解。
不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
三、定理与性质
不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变
四、经典例题
例1 当x 时,代数代2-3x的值是正数。
例2 一元一次不等式组的解集是 (???? )
A.-2<x<3??? B.-3<x<2??? C.x<-3??????D.x<2
例3 已知方程组的解为负数,求k的取值范围。
例4 某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0。5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)
例5 某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元。
?
(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可进入该园林的次数最多的购票方式。
?
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算。
第十章 数据的收集、整理与描述
一、知识结构图
制表 绘图
二、知识定义
全面调查:考察全体对象的调查方式叫做全面调查。
抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
总体:要考察的全体对象称为总体。
个体:组成总体的每一个考察对象称为个体。
样本:被抽取的所有个体组成一个样本。
样本容量:样本中个体的数目称为样本容量。
频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
频率:频数与数据总数的比为频率。
组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
三、经典例题
例1 某班有50人,其中三好学生10人,优秀学生干部5人,在扇形统计图上表示三好学生和优秀学生干部人数的圆心角分别是(????? )
A.720,360????? B.1000,500?????? C.1200,600???? D.800,400
例2 某音乐行出售三种音乐CD ,即古典音乐、流行音乐、民族音乐,为了表示这三种音乐唱片的销售量的百分比,应该用(??? )
A.扇形统计图??? B.折线统计图?? C.条形统计图?? D.以上都可以
例3 在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:
⑴已知最后一组(89.5-99.5)出现的频率为15 %,则这一次抽样调查的容量是________ . ⑵第三小组(69.5~79.5)的频数是_______,频率是________.
例4 如图,是一位护士统计一位病
显示全部