2015年培优辅导讲义年平面直角坐标系和一次函数.doc
文本预览下载声明
一、平面直角坐标系1.定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
要求:画平面直角坐标系时,轴、y轴上的单位长度通常应相同,但在实际应用中,有时会遇到取相同的单位长度有困难的情况,这时可灵活规定单位长度,但必须注意的是,同一坐标轴上相同长度的线段表示的单位数量相同。
2.各个象限内点的特征:第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-,-)点P(x,y),则x<0,y<0;
第四象限:(+,-)点P(x,y),则x>0,y<0;
四个象限的特点:第一象限(正,正),第二象限(负,正),第三象限(负,负),第四象限(正负)
在x轴上:(x,0)点P(x,y),则y=0;在x轴的正半轴:(+,0)点P(x,y),则x>0,y=0;在x轴的负半轴:(-,0)点P(x,y),则x<0,y=0;在y轴上:(0,y)点P(x,y),则x=0;在y轴的正半轴:(0,+)点P(x,y),则x=0,y>0;在y轴的负半轴:(0,-)点P(x,y),则x=0,y<0;坐标原点:(0,0)点P(x, y),则x=0,y=0;3. 点到坐标轴的距离:点P(x,y)到x轴的距离为|y|,
到y轴的距离为|x|。
到坐标原点的距离为 (由勾股定理可得)4.中点与两点间的距离:
已知点A,B
两点AB距离为:AB=
中点P的坐标为:5.点的对称:点P(m,n),关于x轴的对称点坐标是(m,-n),关于y轴的对称点坐标是(-m,n)关于原点的对称点坐标是(-m,-n)6.平行线:平行于x轴的直线上的点的特征:纵坐标相等;如直线PQ,PQ
平行于y轴的直线上的点的特征:横坐标相等;如直线PQ,PQ7.象限角的平分线:第一、三象限角平分线上的点横、纵坐标相等,可记作:
点P(a,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b, a)第二、四象限角平分线上的点横纵坐标互为相反数,可记作:
点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)8.点的平移:在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x+a ,y);将点(x,y)向左平移a个单位长度,可以得到对应点( x-a,y);将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b);将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b)。注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。
平移口诀:“左+右-、上+下-”一次函数的定义
、正比例函数一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.① k不为零 ② x指数为1 ③ b取零
当k0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
解析式:y=kx(k是常数,k≠0)
必过点:(0,0)、(1,k)
走向:k0时,图像经过一、三象限;k0时,图像经过二、四象限
增减性:k0,y随x的增大而增大;k0,y随x增大而减小
倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴
3、一次函数一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.① k不为零 ②x指数为1 ③ b取任意实数
一次函数y=kx+b的图象是经过(0,b)和(-,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b0时,向上平移;当b0时,向下平移)
(1)解析式:y=kx+b(k、b是常数,k0) (2)必过点:(0,b)和(-,0)
(3)走向: k0,图象经过第一、三象限;k0,图象经过第二、四象限
b0,图象经过第一、二象限;b0,图象经过第三、四象限
直线经过第一、二、三象限 直线经过第一、三、四象限
直线经过第一、二、四象限 直线经过第二、三、四象限
(4)增减性: k0,y随x的增大而增大;k0,y随x增大而减小.
(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.
图像的平移: 当b0时,将直线y=kx的图象向上平移b个单位;
当b0时,将直线y=kx的图象向下平移b个单位.
一次
函数
,
符号
图象 性质 随的增大而增大 随
显示全部