中考垂径定理专题知识点选读.doc
文本预览下载声明
圆的垂径定理
1、(2013年潍坊市)如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为( ).
A. B. C. D.
3、(2013河南省)如图,CD是的直径,弦于点G,直线与相切与点D,则下列结论中不一定正确的是【】
(A) (B)∥
(C)AD∥BC (D)
【解析】由垂径定理可知:(A)一定正确。由题可知:,又因为,所以∥,即(B)一定正确。因为所对的弧是劣弧,根据同弧所对的圆周角相等可知(D)一定正确。
4、(2013?泸州)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为( )
A. cm B. cm C. cm或cm D. cm或cm
分析: 先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论. 解答: 解:连接AC,AO,
∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,
∴AM=AB=×8=4cm,OD=OC=5cm,
当C点位置如图1所示时,
∵OA=5cm,AM=4cm,CD⊥AB,
∴OM===3cm,
∴CM=OC+OM=5+3=8cm,
∴AC===4cm;
当C点位置如图2所示时,同理可得OM=3cm,
∵OC=5cm,
∴MC=5﹣3=2cm,
在Rt△AMC中,AC===2cm.
故选C.
(2013?广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为( )
A. cm B. 5cm C. 4cm D. cm
解答: 解:连接AO,
∵半径OD与弦AB互相垂直,∴AC=AB=4cm,
设半径为x,则OC=x﹣3,
在Rt△ACO中,AO2=AC2+OC2,
即x2=42+(x﹣3)2,
解得:x=,
故半径为cm.
故选A.
(2013?嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为( )
A. 2 B. 8 C. 2 D. 2
解答: 解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,
设⊙O的半径为r,则OC=r﹣2,
在Rt△AOC中,
∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,
∴AE=2r=10,
连接BE,
∵AE是⊙O的直径,∴∠ABE=90°,
在Rt△ABE中,
∵AE=10,AB=8,∴BE===6,
在Rt△BCE中,
∵BE=6,BC=4,
∴CE===2.
故选D.
点评: 本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. (2013?宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是( )
A. B. AF=BF C. OF=CF D. ∠DBC=90°
解答: 解:∵DC是⊙O直径,弦AB⊥CD于F,
∴点D是优弧AB的中点,点C是劣弧AB的中点,
A、=,正确,故本选项错误;
B、AF=BF,正确,故本选项错误;
C、OF=CF,不能得出,错误,故本选项错误;X Kb1. Co m
D、∠DBC=90°,正确,故本选项错误;
故选C. 点评: 本题考查了垂径定理及圆周角定理,解答本题的关键是熟练掌握垂径定理、圆周角定理的内容,难度一般. (2013?南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为( )
A. 4 B. 5 C. 4 D. 3
解答: 解:∵∠BAC=∠BOD,
∴=,∴AB⊥CD,
∵AE=CD=8,∴DE=CD=4,
设OD=r,则OE=AE﹣r=8﹣r,
在RtODE中,OD=r,DE=4,OE=8﹣r,
∵OD2=DE2+OE2,即r2=42+(8﹣r)2,解得r=5.
故选B. (2013?内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为 .
解答: 解:∵直线y=kx﹣3k+4必过点D(3,4),
∴最短的弦CD是过点D且与该圆直径垂直的弦,
∵点D的坐标是(3,4),
∴OD=5,
∵以原点O为圆心的圆过点A(13,0),
∴圆的半径为13,
∴OB=13,
∴BD=12,
∴BC的长的最小值为24;
故答案为:24.
(2013?宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 cm.
解答: 解:过点O作OD⊥AB交AB于点D,
∵OA=2OD=2cm,
∴AD=
显示全部