文档详情

中考垂径定理专题知识点选读.doc

发布:2017-06-18约3.41千字共10页下载文档
文本预览下载声明
圆的垂径定理 1、(2013年潍坊市)如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为( ). A. B. C. D. 3、(2013河南省)如图,CD是的直径,弦于点G,直线与相切与点D,则下列结论中不一定正确的是【】 (A) (B)∥ (C)AD∥BC (D) 【解析】由垂径定理可知:(A)一定正确。由题可知:,又因为,所以∥,即(B)一定正确。因为所对的弧是劣弧,根据同弧所对的圆周角相等可知(D)一定正确。 4、(2013?泸州)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为(  )   A. cm B. cm C. cm或cm D. cm或cm 分析: 先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论. 解答: 解:连接AC,AO, ∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm, ∴AM=AB=×8=4cm,OD=OC=5cm, 当C点位置如图1所示时, ∵OA=5cm,AM=4cm,CD⊥AB, ∴OM===3cm, ∴CM=OC+OM=5+3=8cm, ∴AC===4cm; 当C点位置如图2所示时,同理可得OM=3cm, ∵OC=5cm, ∴MC=5﹣3=2cm, 在Rt△AMC中,AC===2cm. 故选C. (2013?广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为(  )   A. cm B. 5cm C. 4cm D. cm 解答: 解:连接AO, ∵半径OD与弦AB互相垂直,∴AC=AB=4cm, 设半径为x,则OC=x﹣3, 在Rt△ACO中,AO2=AC2+OC2, 即x2=42+(x﹣3)2, 解得:x=, 故半径为cm. 故选A.  (2013?嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为(  )   A. 2 B. 8 C. 2 D. 2 解答: 解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4, 设⊙O的半径为r,则OC=r﹣2, 在Rt△AOC中, ∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5, ∴AE=2r=10, 连接BE, ∵AE是⊙O的直径,∴∠ABE=90°, 在Rt△ABE中, ∵AE=10,AB=8,∴BE===6, 在Rt△BCE中, ∵BE=6,BC=4, ∴CE===2. 故选D. 点评: 本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. (2013?宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是(  )   A. B. AF=BF C. OF=CF D. ∠DBC=90° 解答: 解:∵DC是⊙O直径,弦AB⊥CD于F, ∴点D是优弧AB的中点,点C是劣弧AB的中点, A、=,正确,故本选项错误; B、AF=BF,正确,故本选项错误; C、OF=CF,不能得出,错误,故本选项错误;X Kb1. Co m D、∠DBC=90°,正确,故本选项错误; 故选C. 点评: 本题考查了垂径定理及圆周角定理,解答本题的关键是熟练掌握垂径定理、圆周角定理的内容,难度一般. (2013?南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为(  )   A. 4 B. 5 C. 4 D. 3 解答: 解:∵∠BAC=∠BOD, ∴=,∴AB⊥CD, ∵AE=CD=8,∴DE=CD=4, 设OD=r,则OE=AE﹣r=8﹣r, 在RtODE中,OD=r,DE=4,OE=8﹣r, ∵OD2=DE2+OE2,即r2=42+(8﹣r)2,解得r=5. 故选B. (2013?内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为  . 解答: 解:∵直线y=kx﹣3k+4必过点D(3,4), ∴最短的弦CD是过点D且与该圆直径垂直的弦, ∵点D的坐标是(3,4), ∴OD=5, ∵以原点O为圆心的圆过点A(13,0), ∴圆的半径为13, ∴OB=13, ∴BD=12, ∴BC的长的最小值为24; 故答案为:24. (2013?宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为  cm. 解答: 解:过点O作OD⊥AB交AB于点D, ∵OA=2OD=2cm, ∴AD=
显示全部
相似文档