文档详情

数学:《正弦余弦函数的性质》教案(新人教A版必修).doc

发布:2017-04-05约2.38千字共4页下载文档
文本预览下载声明
三角函数 4-1.4.2(2)正弦、余弦函数的性质(二) 教学目的: 知识目标:要求学生能理解三角函数的奇、偶性和单调性; 能力目标:掌握正、余弦函数的奇、偶性的判断,并能求出正、余弦函数的单调区间。 德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志, 实事求是的科学学习态度和勇于创新的精神。 教学重点:正、余弦函数的奇、偶性和单调性; 教学难点:正、余弦函数奇、偶性和单调性的理解与应用 授课类型:新授课 教学模式:启发、诱导发现教学. 教 具:多媒体、实物投影仪 教学过程: 复习引入: 二、讲解新课: 奇偶性 请同学们观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特点是什么? (1)余弦函数的图形 当自变量取一对相反数时,函数y取同一值。 例如: f(-)=,f()= ,即f(-)=f();…… 由于cos(-x)=cosx ∴f(-x)= f(x). 以上情况反映在图象上就是:如果点(x,y)y=cosx的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=cosx的图象上,这时,我们说函数y=cosx是偶函数。 定义:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数。 例如:函数f(x)=x2+1, f(x)=x4-2等都是偶函数。 (2)正弦函数的图形 观察函数y=sinx的图象,当自变量取一对相反数时,它们对应的函数值有什么关系? 这个事实反映在图象上,说明函数的图象有怎样的对称性呢?函数的图象关于原点对称。 也就是说,如果点(x,y)y=sinx的图象上任一点,那么与它关于原点对称的点(-x,-y)y=sinx的图象上,这时,我们说函数y=sinx是奇函数。 定义:一般地,如果对于函数f(x)的定义域内任意一个x,都有 f(-x)=-f(x) ,那么函数f(x)就叫做奇函数。 例如:函数y=x, y= 都是奇函数。 如果函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性。 注意:从函数奇偶性的定义可以看出,具有奇偶性的函数: (1)其定义域关于原点对称; (2)f(-x)= f(x)或f(-x)=- f(x)必有一成立。因此,判断某一函数的奇偶性时。 首先看其定义域是否关于原点对称,若对称,再计算f(-x),看是等于f(x)还是等于- f(x),然后下结论;若定义域关于原点不对称,则函数没有奇偶性。 2.单调性 从y=sinx,x∈[-]的图象上可看出: 当x∈[-,]时,曲线逐渐上升,sinx的值由-1增大到1. 当x∈[,]时,曲线逐渐下降,sinx的值由1减小到-1. 结合上述周期性可知: 正弦函数在每一个闭区间[-+2kπ,+2kπ](k∈Z)上都是增函数,其值从-1增大到1;在每一个闭区间[+2kπ,+2kπ](k∈Z)上都是减函数,其值从1减小到-1. 余弦函数在每一个闭区间[(2k-1)π,2kπ](k∈Z)上都是增函数,其值从-1增加到1;在每一个闭区间[2kπ,(2k+1)π](k∈Z)上都是减函数,其值从1减小到-1. 3.有关对称轴 观察正、余弦函数的图形,可知 y=sinx的对称轴为x= k∈Z y=cosx的对称轴为x= k∈Z (1)写出函数的对称轴; (2)的一条对称轴是( C ) (A) x轴, (B) y轴, (C) 直线, (D) 直线 4.例题讲解 例1 判断下列函数的奇偶性 (1) (2)f(x)=sin4x-cos4x+cos2x; (3) (4) (5); 例2 (1)函数f(x)=sinx图象的对称轴是 ;对称中心是 . (2)函数图象的对称轴是 ;对称中心是 . 例3 已知f(x)=ax+bsin3x+1(a、b为常数),且f(5)=7,求f(-5). 例4 已知 求f(x)的定义域和值域; 判断它的奇偶性、周期性; 判断f(x)的单调性. 例5 (1)θ是三角形的一个内角,且关于x 的函数f(x)=sain(x+θ)+cos(x-θ)是偶函数,求θ的值. (2)若函数f(x)=sin2x+bcos2x的图象关于直线对称,求b的值. 例6 已知,试确定函数的奇偶性、单调性. (1) (2) 有关单调性 (1)利用公式,求证在上是增函数; (2)不通过求值,指出下列各式大于0还是小于0; ①; ② (3)比较大小; (4)求函数的单调递增区间; 巩固与练习 练习讲评 (1)化简: (2)已知非零常数满足,求的值; (3)已知 求值:(1);(2) 解: (1) (2) (3)两式平方相加得; 两式平方相加得
显示全部
相似文档