文档详情

第课时 平面直角坐标系与函数的概念.docx

发布:2017-04-05约字共4页下载文档
文本预览下载声明
第7课时 平面直角坐标系与函数的概念 一:【课前预习】 (一):【知识梳理】 1.平面直角坐标系 (1) 平面内两条有公共原点且互相垂直的数轴,构成平面 直角坐标系,其中,水平的数轴叫做_____轴或_____轴, 通常取向右为正方向;铅直的数轴叫做____轴或_____轴, 取竖直向上为正方向,两轴交点O是原点,在平面中建 立了这个坐标系后,这个平面叫做坐标平面。 (2) 坐标平面的划分:x轴和y轴将坐标平面分成四个象限,如图所示,按___________ 方向编号为第一、二、三、四象限。注意:坐标原点、x轴、y轴不属于任何象限。 (3) 点的坐标的意义:平面中,点的坐标是由两个有顺序的实数组成,其顺序是横坐标在前,纵坐标在后,中间用“,”分开,如(-2,3),横坐标是-2,纵坐标是-3,其位置不能颠倒,(-2,3)与(3,-2)是指两个不同的点的坐标。 (4) 各个象限内和坐标轴的点的坐标的符号规律 ①x轴将坐标平面分为两部分,x轴上方的点的_____坐标为正数;x轴下方的点的______坐标为负数。即第_____、_____象限及y轴正方向(也称y轴正半轴)上的点的纵坐标为______数;第_____、______四象限及y轴负方向(也称y轴负半轴)上的点的纵坐标为_______数。反之,如果点P(a,b)在轴上方,则b____0;如果P(a,b)在轴下方,则b_____0。 ②y轴将坐标平面分为两部分,y轴左侧的点的横坐标为负数;y轴右侧的点的横坐标为正数。即第____、______象限和x轴负半轴上的点的______坐标为负数;第______、_______象限和和_____轴正半轴的的点的______坐标为正数。反之,如果点P(a,b)在轴左侧,则a_____0;如果P(a,b)在轴右侧,则a_____0。 ③规定坐标原点的坐标是(0,0) ④各个象限内的点的符号规律如下表。 坐标符号 点所在位置 横坐标 纵坐标 第一象限 第二象限 第三象限 第四象限 上表反推也成立,如:若点P(a , b)在第四象限,则a 0 ,b 0等等。 ⑤坐标轴上的点的符号规律 坐标符号 点所在位置 横坐标 纵坐标 X轴 正半轴 负半轴 Y 轴 正半轴 负半轴 原点 说明:由符号可以确定点的位置,如:横坐标为0的点在y轴上;横坐标为0,纵坐标小于0的点在y轴的负半轴上等等;由上表可知x轴的点可记为(x , 0) ,y轴上的点可记做(0 , y )。 (5) 对称点的坐标特征:①关于x轴对称的两点:______坐标相同,_____坐标互为________。如点P(2,-4)关于x轴对称的点的坐标为__________________;反之亦成立;②关于y轴对称的两点:______坐标相同,_____坐标互为________。如点P(2,-4)关于y轴对称的点的坐标为__________________;反之亦成立;③关于原点对称的两点:横坐标、纵坐标都是互为___________;如P(-2,3)与Q__________关于原点对称。 (6) 坐标平面内的点和有序实数对(x , y)建立了___________关系。即:在坐标平面内每一点,都可以找到惟一一对有序实数与它对应;反过来,对于任意一个有序实数对,都可以在坐标平面内找到惟一一个点与它对应。 (7) 第一、三象限角平分线上的点到_____轴、_____轴的距离相等,可以用直线___________表示;第二、四象限角平线线上的点到_____轴、_____轴的距离也相等,可以用直线___________表示。 2.函数基础知识 (1) 函数: 如果在一个变化过程中,有两个变量x、y,对于x的 ,y都有 与之对应,此时称y是x的 ,其中x是自变量,y是因变量. (2) 自变量的取值范围:①函数关系式是整式,自变量取值是 .②函数关系式是分式,自变量取值应使得 不等于0.③函数关系式是偶次根式,自变量取值为 为非负数.(4)实际问题的函数式,使实际问题有意义。 (3)常量与变量:常量:在某变化过程中 的量。变量:在某变化过程中 的量。 (4) 函数的表示方法:① ;② ;③ 。 (二):【课前练习】 1.点A(﹣1,2)关于轴的对称点坐标是 ;点A关于原点的对称点的坐标是 . 2.点M(1,2)关于x轴对称点的坐标为( ) A.(-1,2) B.(-1,-2) C.(1,-2) D.(2,-1) 3.
显示全部
相似文档