文档详情

第七章-聚合物的粘弹性.ppt

发布:2017-01-01约5.14千字共44页下载文档
文本预览下载声明
第7章 聚合物的粘弹性 The Viscoelasticity of Polymers 普通粘、弹概念 虎克定律 Hooke’s law 弹 性 与 粘 性 比 较 高聚物粘弹性 the viscoelasticity of polymers Comparison s = const. 7.1 聚合物的力学松弛现象 基本概念 线性粘弹性: 物体的粘弹性完全由符合虎克定律的理想弹性体和符合牛顿定律的理想粘性体所组合来描述,则称为线性粘弹性。 非线性粘弹性: 物体的粘弹性行为不符合理想固体的弹性和理想液体的粘性的组合。 静态粘弹性 固定应力或应变下的粘弹性行为。有蠕变,应力松驰。 动态粘弹性 交变应力或应变下的粘弹性行为。有滞后现象和力学损耗等。 高分子材料蠕变包括三个形变过程: 蠕变与外力作用时间的关系 蠕变与温度高低的关系: 只有在适当外力作用下,Tg附近,链段能够运动,但运动时受到内摩擦力又较大,只能缓慢运动,则可观察到明显的蠕变现象。 而T过低,外力过小,蠕变很小且很慢,在短时间不易觉察。 而T过高,外力过大,形变发展很快,也觉察不到蠕变现象。 线形非晶态高聚物 在玻璃化温度附近可在较短的时间内观察到全部曲线 交联高聚物的蠕变 无粘性流动部分 晶态高聚物的蠕变 不仅与温度有关,而且由于再结晶等情况,使蠕变比预期的要大 各种高聚物在室温时的蠕变现象很不相同,了解这种差别对于实际应用十分重要 例1:硬PVC抗蚀性好,可作化工管道,但易蠕变,所以使用时必须增加支架。 例2:PTFE是塑料中摩擦系数最小的,所以有很好的自润滑性能,但蠕变严重,所以不能作机械零件,却是很好的密封材料。 例3:橡胶采用硫化交联的办法来防止由蠕变产生分子间滑移造成不可逆的形变。 应力松驰与温度的关系: 温度过高,链段运动受到内摩擦力小,应力很快松驰掉了,觉察不到。例如常温下的橡胶。 温度过低,链段运动受到内摩擦力很大,应力松驰极慢,短时间也不易觉察。例如常温下的塑料。 只有在Tg附近,聚合物的应力松驰最为明显。例如软PVC丝,用它来缚物,开始扎得很紧,后来就会慢慢变松,就是应力松弛比较明显的例子。 7.1.3 动态粘弹性(滞后与内耗) Dynamic viscoelasticity Comparing 产生滞后原因 由于链段在运动时要受到内摩擦力的作用,当外力变化时,链段的运动跟不上外力的变化,所以形变落后于应力,有一个相位差。越大,说明链段运动愈困难,愈是跟不上外力的变化。 外力作用的频率与温度对滞后现象有很大的影响。 7.1.3.2 内耗 Internal friction (力学损耗) 高聚物受到交变力作用时会产生滞后现象,上一次受到外力后发生形变在外力去除后还来不及恢复,下一次应力又施加了,以致总有部分弹性储能没有释放出来。这样不断循环,那些未释放的弹性储能都被消耗在体系的自摩擦上,并转化成热量放出。 例1:对于作轮胎的橡胶,则希望它有最小的力学损耗才好 顺丁胶:内耗小,结构简单,没有侧基,链段运动的内摩擦较小 丁苯胶:内耗大,结构含有较大刚性的苯基,链段运动的内摩擦较大 丁腈胶:内耗大,结构含有极性较强的氰基,链段运动的内摩擦较大 丁基胶:内耗比上面几种都大,侧基数目多,链段运动的内摩擦更大 例2: 对于作为防震材料,要求在常温附近有较大的力学损耗(吸收振动能并转化为热能) 对于隔音材料和吸音材料,要求在音频范围内有较大的力学损耗(当然也不能内耗太大,否则发热过多,材料易于热态化) 7.3 粘弹性的时温等效原理 Time temperature superpositon 时温等效原理的意义: 在室温下几年,几百年的应力松驰是不能实现的,可在高温条件下短期内完成;或在室温下几十万分之一秒完成的应力松驰,可在低温条件下几小时完成。 时温等效原理示意图 Example —— Polybutadiene 当选 为参考温度时, 则WLF方程变为: 7.4 研究粘弹行为的实验方法 静态粘弹性的实验方法 : 高温蠕变仪 应力松驰仪 动态粘弹性的实验方法 : 扭摆法 扭辫法 动态粘弹仪 动态热机械分析仪DMA 7.4.1.1 蠕变仪 恒温,恒定负荷的条件下检测试样的应变随时间的变化 高聚物的蠕变试验可在拉伸,压缩,剪切,弯曲下进行。 原理:对试样施加恒定的外力(加力可以是上夹具固定,自试样下面直接挂荷重),产生蠕变,测定应变随时间的变化。  材料受的剪切应力在这种恒切应力下测定应变随时间的变化。 扭摆测量原理:由于试样内部高分子的内摩擦作用,使得惯性体的振动受到阻尼后逐渐衰减,振幅随时间增加而减小。 时效减量 7.4.2.2 动态
显示全部
相似文档