文档详情

十离散因变量和受限因变量模型_s.PPT

发布:2017-04-03约1.18万字共52页下载文档
文本预览下载声明
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 例14.4 审查模型的实例 本例研究已婚妇女工作时间问题,利用mroz.raw中数据,其中y 表示已婚妇女工作时间, x1~ x4分别表示已婚妇女的未成年子女个数、年龄、受教育的年限和丈夫的收入。只要已婚妇女没有提供工作时间,就将工作时间作零对待,符合审查回归模型的特点。 * 14.3.2 截断回归模型 截断问题,形象地说就是掐头或者去尾。即在很多实际问题中,不能从全部个体中抽取因变量的样本观测值,而只能从大于或小于某个数的范围内抽取样本的观测值,此时需要建立截断因变量模型。例如,在研究与收入有关的问题时,收入作为被解释变量。从理论上讲,收入应该是从零到正无穷,但实际中由于各种客观条件的限制,只能获得处在某个范围内的样本观测值。这就是一个截断问题。截断回归模型的形式如下: (14.3.7) 其中:yi 只有在 时才能取得样本观测值, ,为两个常数。 对于截断回归模型,仍然可以采用极大似然法估计模型的参数,只不过此时极大似然估计的密度函数是条件密度。 * 14.5.3 估计审查回归模型 1.模型的估计 打开Equation对话框,从Equation Specification对话框所列估计方法中选择CENSORED估计方法。在Equation Specification区域,输入被审 查的因变量的名字及一系列 回归项。审查回归模型的估 计只支持列表形式的设定。 * (1)临界点对所有个体都已知 按照要求在编辑栏的左编辑区(Left)和右编辑区(Right)输入临界点表达式。注意如果在编辑区域留下空白,EViews将假定该种类型的观测值没有被审查。 例如,在规范的Tobit模型中,数据在0值左边审查,在0值右边不被审查。这种情况可以被指定为: 左编辑区: 0 右编辑区: [blank] 而一般的左边和右边审查由下式给出: 左编辑区: 右编辑区: EViews也允许更一般的设定,这时审查点已知,但在观察值之间有所不同。简单地在适当的编辑区域输入包含审查点的序列名字。 * (2)临界点通过潜在变量产生并且只对被审查的观测值个体已知 在一些情况下,假设临界点对于一些个体( 和 不是对所有的观察值都是可观察到的)是未知的,此时可以通过设置0-1虚拟变量(审查指示变量)来审查数据。EViews提供了另外一种数据审查的方法来适应这种形式。简单地,在估计对话框中选择Field is zero/one indicator of censoring选项,然后在合适的编辑区域输入审查指示变量的序列名。对应于审查指示变量值为1的观察值要进行审查处理,而值为0的观察值不进行审查。 * 例14.4的估计结果如下: * 2.模型的预测与产生残差 EViews提供了预测因变量期望 E (y | x, ?, ?) 的选项,或预测潜在变量期望 E (y*| x, ?, ?) 的选项。从工具栏选择Forecast打开预测对话框。为了预测因变量的期望,应该选择Expected dependent variable,并输入一个序列名称用于保存输出结果。为了预测潜在变量的期望,单击Index-Expected latent variable,并输入一个序列的名称用于保存输出结果。潜在变量的期望 E (y*| x, ?, ?) 可以从如下关系中得到: (14.5.3) 通过选择Procs/Make Residual Series,并从残差的3种类型中进行一种,可以产生审查模型的残差序列。审查模型的残差也有3种类型,与前述类似。 * 3. 估计截断回归模型 估计一个截断回归模型和估计一个审查模型遵循同样的步骤,从主菜单中选择Quick/Estimate Equation,并在Equation Specification 对话框中,选择CENSORED估计
显示全部
相似文档