文档详情

信息论与编码(第二版)曹雪虹(最全版本)答案..doc

发布:2017-01-12约1.02万字共42页下载文档
文本预览下载声明
《信息论与编码(第二版)》曹雪虹答案 第二章 2.1一个马尔可夫信源有3个符号,转移概率为:,,,,,,,,,画出状态图并求出各符号稳态概率。 解:状态图如下 状态转移矩阵为: 设状态u1,u2,u3稳定后的概率分别为W1,W2、W3 由得计算可得 2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:=0.8,=0.2,=0.2,=0.8,=0.5,=0.5,=0.5,=0.5。画出状态图,并计算各状态的稳态概率。 解: 于是可以列出转移概率矩阵: 状态图为: 设各状态00,01,10,11的稳态分布概率为W1,W2,W3,W4 有 得 计算得到 2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。 解:(1) (2) (3) 两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66 共有21种组合: 其中11,22,33,44,55,66的概率是 其他15个组合的概率是 (4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下: (5) 2-4 2.5 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量? 解: 设随机变量X代表女孩子学历 X x1(是大学生) x2(不是大学生) P(X) 0.25 0.75 设随机变量Y代表女孩子身高 Y y1(身高160cm) y2(身高160cm) P(Y) 0.5 0.5 已知:在女大学生中有75%是身高160厘米以上的 即: 求:身高160厘米以上的某女孩是大学生的信息量 即: 2.6 掷两颗骰子,当其向上的面的小圆点之和是3时,该消息包含的信息量是多少?当小圆点之和是7时,该消息所包含的信息量又是多少? 解: 1)因圆点之和为3的概率 该消息自信息量 2)因圆点之和为7的概率 该消息自信息量 2.7 设有一离散无记忆信源,其概率空间为 (1)求每个符号的自信息量 (2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210},求该序列的自信息量和平均每个符号携带的信息量 解: 同理可以求得 因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和 就有: 平均每个符号携带的信息量为bit/符号 2.8 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍? 解: 四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3} 八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则: 四进制脉冲的平均信息量 八进制脉冲的平均信息量 二进制脉冲的平均信息量 所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。 2-9 “-” 用三个脉冲 “●”用一个脉冲 (1) I(●)= I(-)= (2) H= 2-10 (2) P(黑/黑)= P(白/黑)= H(Y/黑)= (3) P(黑/白)= P(白/白)= H(Y/白)= (4) P(黑)= P(白)= H(Y)= 2.11 有一个可以旋转的圆盘,盘面上被均匀的分成38份,用1,…,38的数字标示,其中有两份涂绿色,18份涂红色,18份涂黑色,圆盘停转后,盘面上的指针指向某一数字和颜色。 (1)如果仅对颜色感兴趣,则计算平均不确定度 (2)如果仅对颜色和数字感兴趣,则计算平均不确定度 (3)如果颜色已知时,则计算条件熵 解:令X表示指针指向某一数字,则X={1,2,……….,38} Y表示指针指向某一种颜色,则Y={l绿色,红色,黑色} Y是X的函数,由题意可知
显示全部
相似文档