文档详情

信息论与编码曹雪虹张宗橙(第二版)课后习题答案.doc

发布:2017-04-22约1.04万字共35页下载文档
文本预览下载声明
信息论与编码-曹雪虹张宗橙(第二版)课后习题答案 第二章  MACROBUTTON MTEditEquationSection2 Equation Chapter 1 Section 1 SEQ MTEqn \r \h \* MERGEFORMAT  SEQ MTSec \r 1 \h \* MERGEFORMAT  SEQ MTChap \r 1 \h \* MERGEFORMAT 2.1一个马尔可夫信源有3个符号,转移概率为:,,,,,,,,,画出状态图并求出各符号稳态概率。 解:状态图如下 状态转移矩阵为: 设状态u1,u2,u3稳定后的概率分别为W1,W2、W3 由得计算可得 2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:=0.8,=0.2,=0.2,=0.8,=0.5,=0.5,=0.5,=0.5。画出状态图,并计算各状态的稳态概率。 解: 于是可以列出转移概率矩阵: 状态图为: 设各状态00,01,10,11的稳态分布概率为W1,W2,W3,W4 有 得 计算得到 2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。 解: (1) (2) (3) 两个点数的排列如下: 111213141516212223242526313233343536414243444546515253545556616263646566 共有21种组合: 其中11,22,33,44,55,66的概率是 其他15个组合的概率是 (4) 参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下: (5) 2-4 2.5 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量? 解: 设随机变量X代表女孩子学历 Xx1(是大学生)x2(不是大学生)P(X)0.250.75 设随机变量Y代表女孩子身高 Yy1(身高160cm)y2(身高160cm)P(Y)0.50.5 已知:在女大学生中有75%是身高160厘米以上的 即: 求:身高160厘米以上的某女孩是大学生的信息量 即: 2.6 掷两颗骰子,当其向上的面的小圆点之和是3时,该消息包含的信息量是多少?当小圆点之和是7时,该消息所包含的信息量又是多少? 解: 1)因圆点之和为3的概率 该消息自信息量 2)因圆点之和为7的概率 该消息自信息量 2.7 设有一离散无记忆信源,其概率空间为 (1)求每个符号的自信息量 (2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210},求该序列的自信息量和平均每个符号携带的信息量 解: 同理可以求得 因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和 就有: 平均每个符号携带的信息量为bit/符号 2.8 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍? 解: 四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3} 八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则: 四进制脉冲的平均信息量 八进制脉冲的平均信息量 二进制脉冲的平均信息量 所以: 四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。 2-9 “-” 用三个脉冲 “●”用一个脉冲 (1) I(●)= I(-)= (2) H= 2-10 (2) P(黑/黑)= P(白/黑)= H(Y/黑)= (3) P(黑/白)= P(白/白)= H(Y/白)= (4) P(黑)= P(白)= H(Y)= 2.11 有一个可以旋转的圆盘,盘面上被均匀的分成38份,用1,…,38的数字标示,其中有两份涂绿色,18份涂红色,18份涂
显示全部
相似文档