数学上海师大附中2009至2010学年度高三第一学期期中考试.doc
文本预览下载声明
上海师大附中2009—2010学年度高三第一学期期中考试数学试题 - PAGE 7 -
上海师大附中
2009—2010学年度高三第一学期期中考试
数 学 试 题
一、填空题(每小题4分,共56分)
1.已知且,则可表示成 .
2.若,则的值为 .
3.(文)集合集合,则等于 .
(理)若,那么 .
4.若点(1,2)既在函数的图象上,又在它的反函数的图象上,则函数的解析式 .
5.(文)不等式的解集是 .
(理)关于的不等式的解集是 .
6.(文)已知图像的对称中心是(3,-1),则实数等于 .
(理)设函数上是增函数,那么的取值范围是 .
7.已知,,则的值是 .
8.(文)不等式的解集为,则的值是 .
(理)不等式的解集为,则的值是 .
9.设,其中均为非零实数,若,则的值是 .
10.若关于x的方程有实根,则纯虚数= .
11.已知函数的值域为R,则实数的取值范围是 .
12.在高校自主招生中,某班级50人报考交大和复旦两所大学,已知每人至少报考其中一所学校。估计报考交大的人数占全班80%到90%之间,报考复旦的人数占全班32%到40%之间,设M是两所大学都报的人数的最大值,m是两所大学都报的人数的最小值,则m= .
13.下列命题中假命题的个数为 .
= 1 \* GB3 ①的周期为,最大值为;
= 2 \* GB3 ②若x是第一象限的角,则是增函数;
= 3 \* GB3 ③在中,若,则;
= 4 \* GB3 ④既不是奇函数,也不是偶函数;
= 5 \* GB3 ⑤且,则,;
= 6 \* GB3 ⑥的一条对称轴为
14.已知函数,给出下列四个命题: = 1 \* GB3 ①为奇函数的充要条件是q =0; = 2 \* GB3 ②的图象关于点(0,q)对称; = 3 \* GB3 ③当p=0时,方程=0的解集一定非空; = 4 \* GB3 ④方程=0的解的个数一定不超过两个。其中所有正确命题的序号是 .
二、选择题(每小题4分,共16分)
15.给出以下四个命题:
= 1 \* GB3 ①若,则;
= 2 \* GB3 ②若;
= 3 \* GB3 ③若,则;
= 4 \* GB3 ④若、,是奇数,则、中一个是奇数,一个是偶数,则( )
A. = 1 \* GB3 ①的逆命题真 B. = 2 \* GB3 ②的否命题真
C. = 3 \* GB3 ③的逆否命题假 D. = 4 \* GB3 ④的逆命题假
16、已知函数的值域分别是集合P、Q,则( )
A. B.P=Q C. D.以上答案都不对
17、的图象是( )
18、某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表1 市场供给量
单价(元/kg)
2
2.4
2.8
3.2
3.6
4
供给量(1000kg)
50
60
70
75
80
90
表2 市场需求量
单价(元/kg)
4
3.4
2.9
2.6
2.3
2
需求量(1000kg)
50
60
65
70
75
80
根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间( )
A.(2.3,2.6)内 B.(2.4,2.6)内
C.(2.6,2.8)内 D.(2.8,2.9)内
三、解答题
19.(本题14分)已知复数满足为虚数单位),,求一个以为根的实系数一元二次方程..
20.(本题14分)设函数的图象为、关于点A(2,1)的对称的图象为,对应的函数为.
(1)求函数的解析式;
(2)若直线与只有一个交点,求的值并求出交点的坐标.
21.(本题16分)设定义在上的函数满足下面三个条件:
= 1 \* GB3 ①对于任意正实数、,都有; = 2 \* GB3 ②;
= 3 \* GB3 ③当时,总有..
(1)求的值;
(2)求证:上是减函数.
22.(本题16分)已知函数
(1)求函数的定义域和值域,并作函数在内的图象;
(2)(文)求函数的最小正周期;
(理)证明函数是周期函数,并求函数的最小正周期
显示全部