基于PCA的人脸识别算法实现毕业设计论文_精品.doc
文本预览下载声明
毕业设计(论文)
设计(论文)题目:
摘 要
本文按照完整人脸识别流程来分析基于PCA的人脸识别算法实现的性能。首先使用常用的人脸图像的获取方法获取人脸图像。本文为了更好的分析基于PCA人脸识别系统的性能选用了Essex人脸数据库。接下来是人脸图像预处理方法。由于Essex人脸图像质量较好,而且已经做过相应的预处理,所以本文试验中只使用灰度处理。接着使用PCA提取人脸特征,使用奇异值分解定理计算协方差矩阵的特征值和特征向量以及使用最近邻法分类器欧几里得距离来进行人脸判别分类。在实验中我们发现基于PCA的人脸识别系统的识别率很高,而且具有一定鲁棒性,所以基于PCA的人脸识别算法的实现的研究还是有意义。
【关键词】
ABSTRACT
With the development of science and technology, the progress of human society, the traditional identification is easy to lose, easy to be cracked and it has not play an identifiable role. People need a more secure and reliable identification technology. Biometric is unique, easy to lose and replication characteristics of good meet the needs of the identification. With the development of computer science and technology and biomedical makes use of biometric identification has become possible. In the field of biometric identification, face recognition with the advantages of operation is fast and simple, the results are intuitive, accurate and reliable,do not need co-ordination, has become the focus of attention. The principal component analysis (PCA) to extract high dimensional face image of the main element, making the images are processed in low-dimensional space and it reduces the difficulty of image processing. PCA solves effectively the problem of high dimension image space and it has become a very important theory in face recognition field. This paper is in this context of writing from. In accordance with the full recognition process to analyze the performance of PCA-based face recognition algorithm. The first to use the method of access to commonly used face images for face images. In order to better analysis is based on the performance of the PCA face recognition system selected Essex face database. Next is the face image preprocessing methods. Essex face image quality is better, and have done the appropriate pretreatment, using only gray-scale processing of this trial. T
显示全部