数字逻辑欧阳星明第四版华科出版1~7全答案解析.ppt
文本预览下载声明
* 习题课 (4)状态编码 根据最简流程表可作出状态相邻图如右下图所示。 A C B 由于最简流程表中有三个状态,状态编码时需要两位二进制代码。根据该最简流程表中的状态转移关系可作出如下的状态相邻图。显然由于三个状态的相邻关系构成了一个闭环,所以,用两位二进制代码无法满足其相邻关系,因此,在A状态和C状态之间增加一个过渡状态,即可得到新的状态相邻图. 最简流程表 x2x1=00 A B 激励状态Y/输出Z 二次状态 y x2x1=01 x2x1=11 x2x1=10 C A/0 C/d d/d B/0 A/0 B/0 B/0 B/0 C/1 C/1 B/d B/d D * 习题课 增加过渡状态后,流程表修改为: D A C B 最简流程表 x2x1=00 A B 激励状态Y/输出Z 二次状态 y x2x1=01 x2x1=11 x2x1=10 C A/0 C/d d/d D/0 D/0 B/0 B/0 B/0 C/1 C/1 B/d B/d D B/0 A/0 d/d d/d * 习题课 A →00 B → 11 C →01 D →10 设二次状态用y2、y1表示,令y2、y1取值00表示A,10表示D,11表示B,01表示C,将其代入给定流程表,即可得到相应二进制流程表。该流程表描述的电路不会产生临界竞争 。 最简流程表 x2x1=00 00 11 激励状态Y2Y1 /输出Z 二次状态 y2y1 x2x1=01 x2x1=11 x2x1=10 01 00/0 01/d d/d 10/0 10/0 11/0 11/0 11/0 01/1 01/1 11/d 11/d 10 11/0 00/0 d/d d/d * 习题课 (5)确定激励状态和输出函数表达式 根据二进制流程表可作出激励状态和输出函数卡诺图如下图所示。 化简后,可得到激励状态和输出函数的最简表达式: 00 01 11 10 x2x1 y2y1 00 01 11 10 Y2 1 1 d d d 1 1 1 1 1 1 00 01 11 10 x2x1 y2y1 00 01 11 10 Y1 1 1 d d d 1 1 0 1 1 1 00 01 11 10 x2x1 y2y1 00 01 11 10 Z 1 1 d d d d d 1 1 d * 习题课 (6) 画出逻辑电路图 根据激励状态和输出函数的“与非—与非”表达式,可画出用与非门实现给定功能的逻辑电路图如下图所示。 y2 Y1 Y2 y1 X2 X1 1 1 1 Z 1 * 习题课 第七章 中规模通用集成电路 及其应用 * 习题课 7.1? 用4位二进制并行加法器设计一个实现8421码对9求补的逻辑电路。 解答: 设8421码为B8B4B2B1 ,其对9的补数为C8C4C2C1 ,关系如下: 相应逻辑电路图如右图所示。 * 习题课 7.2? 用两个4位二进制并行加法器实现2位十进制数8421码到二进制码的转换。 解答: 设两位十进制数的8421码为D80D40D20D10D8D4D2D1 ,相应二进制数为B6B5B4B3B2B1B0,则应有B6B5B4B3B2B1B0 = D80D40D20D10×1010+D8D4D2D1,运算如下: ? × ? ? ? D80 1 D40 0 D20 1 D10 0 + D80 D40 D80 D20 D40 D10 D8 D20 ? D4 D10 ? D2 D1 ? B6 B5 B4 B3 B2 B1 B0 * 习题课 即: B0=D1; B1=D10+ D2 ; B2= D20+ D4 ; B3= D40+D10+D8; B4= D80+D20 ; B5= D40 ; B6= D80 ; 据此,可得到实现预定功能的逻辑电路如图2所示。 B6 B5 B4 B3 B2 B1 B0 D80 D8 D20 D10 D2 D4 D10 D1 D20 D40 D40 D80 0 0 0 0 T693 T693 * 习题课 7.3? 用4位二进制并行加法器设计一个用8421码表示的1位十进制加法器。 解答: 由于十进制数采用8421码,因此,二进制并行加法器输入被加数和加数的取值范围为0000~1001(0~9),输出端输出的和是一个二进制数,数的范围为0000~10011(0~19,
显示全部