文档详情

线性代数各性质定理公式总结.doc

发布:2017-04-07约4.76千字共18页下载文档
文本预览下载声明
概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确 注:全体维实向量构成的集合叫做维向量空间. 注 √ 关于: ①称为的标准基,中的自然基,单位坐标向量; ②线性无关; ③; ④; ⑤任意一个维向量都可以用线性表示. 行列式的定义 √ 行列式的计算: ①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ②若都是方阵(不必同阶),则(拉普拉斯展开式) ③上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④关于副对角线: (即:所有取自不同行不同列的个元素的乘积的代数和) ⑤范德蒙德行列式: 矩阵的定义 由个数排成的行列的表称为矩阵.记作:或 伴随矩阵 ,为中各个元素的代数余子式. √ 逆矩阵的求法: ① 注: ② ③ √ 方阵的幂的性质: √ 设的列向量为,的列向量为, 则 ,为的解可由线性表示.即:的列向量能由的列向量线性表示,为系数矩阵. 同理:的行向量能由的行向量线性表示,为系数矩阵. 即: √ 用对角矩阵左乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵右乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. √ 分块矩阵的转置矩阵: 分块矩阵的逆矩阵: 分块对角阵相乘:, 分块对角阵的伴随矩阵: √ 矩阵方程的解法():设法化成 ① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关. ③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动) ④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组中任一向量≤≤都是此向量组的线性组合. ⑦ 向量组线性相关向量组中至少有一个向量可由其余个向量线性表示. 向量组线性无关向量组中每一个向量都不能由其余个向量线性表示. ⑧ 维列向量组线性相关; 维列向量组线性无关. ⑨ 若线性无关,而线性相关,则可由线性表示,且表示法唯一. ⑩ 矩阵的行向量组的秩列向量组的秩矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数. 行阶梯形矩阵 可画出一条阶梯线,线的下方全为;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是时,称为行最简形矩阵 ? 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系; 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系: 对施行一次初等行变换得到的矩阵,等于用相应的初等矩阵左乘; 对施行一次初等列变换得到的矩阵,等于用相应的初等矩阵右乘. 矩阵的秩 如果矩阵存在不为零的阶子式,且任意阶子式均为零,则称矩阵的秩为.记作 向量组的秩 向量组的极大无关组所含向量的个数,称为这个向量组的秩.记作 矩阵等价 经过有限次初等变换化为. 记作: 向量组等价 和可以相互线性表示. 记作: ? 矩阵与等价,可逆作为向量组等价,即:秩相等的向量组不一定等价. 矩阵与作为向量组等价 矩阵与等价. ? 向量组可由向量组线性表示有解≤. ? 向量组可由向量组线性表示,且,则线性相关. 向量组线性无关,且可由线性表示,则≤. ? 向量组可由向量组线性表示,且,则两向量组等价; ? 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ? 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ? 若两个线性无关的向量组等价,则它们包含的向量个数相等. ? 设是矩阵,若,的行向量线性无关; 若,的列向量线性无关,即:线性无关. √ 矩阵的秩的性质: ①≥ ≤≤ ② ③ ④ ⑤≤ ⑥ 即:可逆矩阵不影响矩阵的秩. ⑦若; 若 ⑧等价标准型. ⑨≤ ≤≤ ⑩ 注: 线性方程组的矩
显示全部
相似文档