2010年中考数学试题压轴题汇编.doc
文本预览下载声明
PAGE
PAGE 31
2010年中考数学试题压轴题汇编(三)
26.(重庆市江津区)如图,抛物线与轴交于两点A(-1,0),B(1,0),与轴交于点C.
(1)求抛物线的解析式;
(2)过点B作BD∥CA与抛物线交于点D,求四边形ACBD的面积;
(3)在轴下方的抛物线上是否存在一点M,过M作MN⊥轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.
解:(1)把A B代入得:
解得:
………………………………………………………………………3分
(2)令,得 ∴ ……………………………………………4分
∵OA=OB=OC= ∴BAC=ACO=BCO=ABC =
∵BD∥CA, ∴ABD=BAC
过点D作DE轴于E,则BDE为等腰直角三角形
令 ,则 ∴
∵点D在抛物线上 ∴
解得,(不合题意,舍去)
∴DE=
(说明:先求出直线BD的解析式,再用两个解析式联立求解得到点D的坐标也可)
∴四边形ACBD的面积=AB?OC +AB?DE
………………………………7分
(说明:也可直接求直角梯形ACBD的面积为4)
(3)存在这样的点M……………………………………………………………………8分
∵ABC=ABD= ∴DBC=
∵MN轴于点N, ∴ANM=DBC =
在Rt△BOC中,OB=OC= 有BC=
在Rt△DBE中,BE=DE= 有BD=
设M点的横坐标为,则M
①点M在轴左侧时,则
(ⅰ) 当AMN CDB时,有
∵
即 解得:(舍去)
则
(ⅱ) 当AMN DCB时,有
即 解得(舍去) (舍去)…………10分
② 点M在轴右侧时,则
(ⅰ) 当AMN DCB时,有
∵
∴
解得(舍去)
∴
(ⅱ) 当AMN CDB时,有
即 解得:(舍去)
∴
∴M点的坐标为…………………………12分
25.(黄冈市15分)已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图).
(1)求字母a,b,c的值;
(2)在直线x=1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;
(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立,若存在请求出t值,若不存在请说明理由.
解:(1)a=-1,b=2,c=0
(2)过P作直线x=1的垂线,可求P的纵坐标为,横坐标为.此时,MP=MF=PF=1,故△MPF为正三角形.
(3)不存在.因为当t<,x<1时,PM与PN不可能相等,
同理,当t>,x>1时,PM与PN不可能相等.
26.( 湖南常德市)如图10,若四边形ABCD、四边形CFED都是正方形,显然图中有AG=CE,AG⊥CE.
(1)当正方形GFED绕D旋转到如图11的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由.
(2)当正方形GFED绕D旋转到如图12的位置时,延长CE交AG于H,交AD于M.
①求证:AG⊥CH;
②当AD=4,DG=时,求CH的长。
A
B
C
D
E
F
图10
G
A
D
图11
F
E
B
C
G
A
D
B
C
E
F
H
M
图12
A
B
C
D
E
F
G
图11
解:(1)成立.
四边形、四边形是正方形,
∴ ……………1分
∠∠.
∴∠90°-∠∠. ……………2分
B
A
C
D
E
F
G
1
2
图12
H
P
M
∴△△.
∴. ……………3分
(2)①类似(1)可得△△,
∴∠1=∠2 …………………4分
又∵∠=∠.
∴∠∠=.
即 …………………5分
② 解法一: 过作于,
由题意有,
∴,则∠1=. ………6分
而∠1=∠2,∴∠2==∠1=.
∴ ,即. …………………7分
在Rt中,==,………8分
而∽,∴, 即,
∴. …………………9分
再连接,显然有,
∴.
所求的长为. …………………10分
B
A
C
D
E
F
G
1
2
图12
H
P
M
解法二:研究四边形ACDG的面积
过作于,
由题意有,
∴,. ………………8分
而以CD为底边的三角形CD
显示全部