AI第五章作业讲解[精].doc
文本预览下载声明
习题五
求下列谓词公式的子句集。
(x(y(P(x,y) (Q(x,y))
解:去掉存在量词变为:P(a,b)(Q(a,b)
变成子句集{ P(a,b),Q(a,b)}
(x (y(P(x,y) (Q(x,y))
解:去掉蕴涵符号变为:(x (y(? P(x,y) ( Q(x,y))
去掉全称量词变为:? P(x,y) ( Q(x,y)
变成子句集{ ? P(x,y) ( Q(x,y)}
(x(y((P(x,y) (Q(x,y)) (R(x,y))
解:去掉蕴涵符号变为:(x (y(? (P(x,y) ( Q(x,y)) ( R(x,y))
否定符号作用于单个谓词变为:
(x (y((? P(x,y) (? Q(x,y)) ( R(x,y))
去掉存在量词变为:(x ((? P(x,f(x)) (? Q(x,f(x))) ( R(x,f(x)))
去掉全称量词变为: (? P(x,f(x)) (? Q(x,f(x))) ( R(x,f(x)
化合取范式为:
(? P(x,f(x)) ( R(x,f(x))((? Q(x,f(x)) ( R(x,f(x))
变元:(? P(x,f(x)) ( R(x,f(x)))((? Q(y,f(y)) ( R(y,f(y)))
变成子句集{ ? P(x,f(x)) ( R(x,f(x)), ? Q(y,f(y)) ( R(y,f(y))}
(x (P(x) ((y (P(y) (R(x,y)))
解:去掉蕴涵符号变为:(x (? (P(x) ( (y (P(y) (R(x,y)))
去掉存在量词变为:(x (? (P(x) ( (P(f(x)) (R(x,f(x)))
去掉全称量词变为: (? (P(x) ( (P(f(x)) (R(x,f(x)))
化合取范式为:(? (P(x) ( P(f(x))) ((? (P(x) (R(x,f(x)))
变元:(? (P(x) ( P(f(x))) ((? (P(y) (R(y,f(y)))
变为子句集:{? (P(x) ( P(f(x)),? (P(y) (R(y,f(y))}
(x(P(x) ((x(P(y) (R(x,y)))
解:去掉蕴涵符号变为:(x(P(x) ((x(?P(y) (R(x,y)))
去掉存在量词变为:P(a) ((x(?P(y) (R(a,y))
去掉全称量词变为:P(a) ( (?P(y) (R(a,y))
变成子句集:{ P(a) ,?P(y) (R(a,y) }
(x(y(z (u(v (w(p(x,y,z,u,v,w) ((Q(x,y,z,u,v,w) (?R(x,z,w)))
解:去掉存在量词变为:
(z (v (p(a,b,z,f(z),v,g(z,v)) ((Q(a,b,z,f(z),v, g(z,v) (?R(a,z, g(z,v)))
去掉全称量词变为:
p(a,b,z,f(z),v,g(z,v)) ((Q(a,b,z,f(z),v, g(z,v) (?R(a,z, g(z,v))
变元:
p(a,b,x,f(x),y,g(x,y)) ((Q(a,b,z,f(z),v, g(z,v) (?R(a,z, g(z,v))
化成子句集:
{p(a,b,x,f(x),y,g(x,y)) , Q(a,b,z,f(z),v, g(z,v) (?R(a,z, g(z,v)) }
3. 试判断下列子句集中哪些是不可满足的。
S={P(y) (?Q(y), ?P(f(x)) (Q(y)}
解:
P(y) (?Q(y)
?P(f(x)) (Q(z) (适当改名使子句之间不含相同变元
利用归结原理:
(3)P(y) (?P(f(x)) (1)(2) {y/z}
(4)T {f(x)/y}
归结不出空子句,所以原子句集是可以满足的。
S={? P(x) (Q(x), ? Q(y) (R(y),P(a),R(a) }
解:(1)? P(x) (Q(x)
(2)? Q(y) (R(y)
(3)P(a)
(4)R(a)
利用归结原理判断
(5)Q(a) (1)(3) {a/x}
(6)R(a) (2)(5) {a/x}
归结不出空子句,所以是可满足的子句集。
S={? P(x) (?Q(y) (?L(x,y),P(a), ? R(z) (L(a,z) ,R(b),Q(b)}
解:(1)? P(x) (?Q(y) (?L(x,y)
(2)P(a)
(3)? R(z) (L(a,z)
(4)R(b)
(5)Q(b)
利用归结原理来进行判断
(6)?Q(y) (?L(a,y) (1)(2){a/x}
(7)L(a,b) (3)(4) {
显示全部