文档详情

AI第五章作业讲解[精].doc

发布:2017-01-17约6.55千字共11页下载文档
文本预览下载声明
习题五 求下列谓词公式的子句集。 (x(y(P(x,y) (Q(x,y)) 解:去掉存在量词变为:P(a,b)(Q(a,b) 变成子句集{ P(a,b),Q(a,b)} (x (y(P(x,y) (Q(x,y)) 解:去掉蕴涵符号变为:(x (y(? P(x,y) ( Q(x,y)) 去掉全称量词变为:? P(x,y) ( Q(x,y) 变成子句集{ ? P(x,y) ( Q(x,y)} (x(y((P(x,y) (Q(x,y)) (R(x,y)) 解:去掉蕴涵符号变为:(x (y(? (P(x,y) ( Q(x,y)) ( R(x,y)) 否定符号作用于单个谓词变为: (x (y((? P(x,y) (? Q(x,y)) ( R(x,y)) 去掉存在量词变为:(x ((? P(x,f(x)) (? Q(x,f(x))) ( R(x,f(x))) 去掉全称量词变为: (? P(x,f(x)) (? Q(x,f(x))) ( R(x,f(x) 化合取范式为: (? P(x,f(x)) ( R(x,f(x))((? Q(x,f(x)) ( R(x,f(x)) 变元:(? P(x,f(x)) ( R(x,f(x)))((? Q(y,f(y)) ( R(y,f(y))) 变成子句集{ ? P(x,f(x)) ( R(x,f(x)), ? Q(y,f(y)) ( R(y,f(y))} (x (P(x) ((y (P(y) (R(x,y))) 解:去掉蕴涵符号变为:(x (? (P(x) ( (y (P(y) (R(x,y))) 去掉存在量词变为:(x (? (P(x) ( (P(f(x)) (R(x,f(x))) 去掉全称量词变为: (? (P(x) ( (P(f(x)) (R(x,f(x))) 化合取范式为:(? (P(x) ( P(f(x))) ((? (P(x) (R(x,f(x))) 变元:(? (P(x) ( P(f(x))) ((? (P(y) (R(y,f(y))) 变为子句集:{? (P(x) ( P(f(x)),? (P(y) (R(y,f(y))} (x(P(x) ((x(P(y) (R(x,y))) 解:去掉蕴涵符号变为:(x(P(x) ((x(?P(y) (R(x,y))) 去掉存在量词变为:P(a) ((x(?P(y) (R(a,y)) 去掉全称量词变为:P(a) ( (?P(y) (R(a,y)) 变成子句集:{ P(a) ,?P(y) (R(a,y) } (x(y(z (u(v (w(p(x,y,z,u,v,w) ((Q(x,y,z,u,v,w) (?R(x,z,w))) 解:去掉存在量词变为: (z (v (p(a,b,z,f(z),v,g(z,v)) ((Q(a,b,z,f(z),v, g(z,v) (?R(a,z, g(z,v))) 去掉全称量词变为: p(a,b,z,f(z),v,g(z,v)) ((Q(a,b,z,f(z),v, g(z,v) (?R(a,z, g(z,v)) 变元: p(a,b,x,f(x),y,g(x,y)) ((Q(a,b,z,f(z),v, g(z,v) (?R(a,z, g(z,v)) 化成子句集: {p(a,b,x,f(x),y,g(x,y)) , Q(a,b,z,f(z),v, g(z,v) (?R(a,z, g(z,v)) } 3. 试判断下列子句集中哪些是不可满足的。 S={P(y) (?Q(y), ?P(f(x)) (Q(y)} 解: P(y) (?Q(y) ?P(f(x)) (Q(z) (适当改名使子句之间不含相同变元 利用归结原理: (3)P(y) (?P(f(x)) (1)(2) {y/z} (4)T {f(x)/y} 归结不出空子句,所以原子句集是可以满足的。 S={? P(x) (Q(x), ? Q(y) (R(y),P(a),R(a) } 解:(1)? P(x) (Q(x) (2)? Q(y) (R(y) (3)P(a) (4)R(a) 利用归结原理判断 (5)Q(a) (1)(3) {a/x} (6)R(a) (2)(5) {a/x} 归结不出空子句,所以是可满足的子句集。 S={? P(x) (?Q(y) (?L(x,y),P(a), ? R(z) (L(a,z) ,R(b),Q(b)} 解:(1)? P(x) (?Q(y) (?L(x,y) (2)P(a) (3)? R(z) (L(a,z) (4)R(b) (5)Q(b) 利用归结原理来进行判断 (6)?Q(y) (?L(a,y) (1)(2){a/x} (7)L(a,b) (3)(4) {
显示全部
相似文档