基于神经网络的图像识别技术研究-计算机应用技术专业论文.docx
文本预览下载声明
摘
摘 要
在现代工业自动化中,随着高精度、高速度、高质量要求的不断攀 升,微型轴承辊子的作用愈发突出。各类机电设备对其的依赖性日趋加 剧而微型轴承辊子作为重要零件,微型轴承辊子的质量对设备的精度、 运动性能、使用寿命等都有至关重要的影响。由实验统计表明:在轴承 的失效形式中,由于轴承辊子表面的缺陷而引起的裂纹、裂缝造成的轴 承失效达65%。因此,必须对轴承辊子质量进行严格检测,尤其是对裂 纹、裂缝的检测。
本文的主要研究内容是研发一种面向企业应用于微型轴承辊子表 面缺陷的检测系统,是基于神经网络的图象识别技术,人工神经网络类 似于生物神经系统,是以神经细胞为基本运算单元(即人工神经元)组成 的一种非线性自适应动力学系统。通过利用合理的学习算法进行训练, 神经网络对事物和环境具有很强的自学习、自适应和自组织能力。将神 经网络应用于微型轴承辊子检测的优点是可以通过对系统进行训练来 捕获轴承辊子表面缺陷的复杂分类条件,而缺点在于网络必须经过广泛 的结构调整和样本训练才能获得好的效果。
本文介绍了神经网络的基本原理和主要特征,针对轴承辊子检测领 域的特殊性,通过理论分析和大量实验获得了一个较为有效的神经网络 结构;对待测图像进行预处理,提高检测率;引入学习率来加快BP神 经网络的训练速度。最终,提出了一个经过改进的基于神经网络的轴承 辊子检测系统。
关键宇:表面检测人工神经元神经网络BP神经网络
AbstractIn
Abstract
In the modem industry automation,along with high accuracy,high velocity,the high grade request climbs unceasingly,the miniature bearing function increasingly is prominent.But each kind of electromechanical device intensifies to its dependence the miniature bearing to take day by daY the important components,the miniature bearing quality to the equipment precision.the movement performance,the service life and SO on all has the very important influence.Counts by the experiment indicated that.the bearing expiration as a result of the bearing surface flaw which in the bearing expiration form,which caUSeS the crack,the crack creates to reach 65%.Therefore.must carry on the strict examination to the bearing qualitg in particular to crack,crack examination.
Titis article main research content is researches and develops one Idnd to apply face the enterprise in the miniature bearing surface defect examination systern,is based on the neural network pattern recognition
technology,the artificial neural networks are similar to the biology nervous system,is by the nerve cell one kind of non—linear auto.adapted dynamics
svstem which(i.e.artificial neuron)composes for the fundamental operation
unit.Carries on the training through the USe reasonable study algorithm,the
neural network has to the thing and the environment very stfong from the
stIIdy,auto-adapted and from
显示全部