2012年全国各地中考数学压轴题汇编第31章_与圆有关的解答题.doc
文本预览下载声明
2012年全国各地中考数学汇编.(2012临沂)如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长.
考点:切线的判定;圆周角定理;解直角三角形。
解答:(1)证明:连接OA.
∵∠B=60°,
∴∠AOC=2∠B=120°,
又∵OA=OC,
∴∠ACP=∠CAO=30°,
∴∠AOP=60°,
∵AP=AC,
∴∠P=∠ACP=30°,
∴∠OAP=90°,
∴OA⊥AP,
∴AP是⊙O的切线,
(2)解:连接AD.
∵CD是⊙O的直径,
∴∠CAD=90°,
∴AD=AC?tan30°=3×=,
∵∠ADC=∠B=60°,
∴∠PAD=∠ADC﹣∠P=60°﹣30°,
∴∠P=∠PAD,
∴PD=AD=.
2.(2012义乌市)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度数;
(2)求证:AE是⊙O的切线;
(3)当BC=4时,求劣弧AC的长.
考点:切线的判定;圆周角定理;弧长的计算。
解答:解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,
∴∠ABC=∠D=60°;
(2)∵AB是⊙O的直径,
∴∠ACB=90°.
∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,
∴AE是⊙O的切线;
(3)如图,连接OC,
∵OB=OC,∠ABC=60°,
∴△OBC是等边三角形,
∴OB=BC=4,∠BOC=60°,
∴∠AOC=120°,
∴劣弧AC的长为.
3.(2012?杭州)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.
(1)求∠COB的度数;
(2)求⊙O的半径R;
(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.
解答: 解:(1)∵AE切⊙O于点E,
∴AE⊥CE,又OB⊥AT,
∴∠AEC=∠CBO=90°,
又∠BCO=∠ACE,
∴△AEC∽△OBC,又∠A=30°,
∴∠COB=∠A=30°;
(2)∵AE=3,∠A=30°,
∴在Rt△AEC中,tanA=tan30°=,即EC=AEtan30°=3,
∵OB⊥MN,∴B为MN的中点,又MN=2,
∴MB=MN=,
连接OM,在△MOB中,OM=R,MB=,
∴OB==,
在△COB中,∠BOC=30°,
∵cos∠BOC=cos30°==,
∴BO=OC,
∴OC=OB=,
又OC+EC=OM=R,
∴R=+3,
整理得:R2+18R﹣115=0,即(R+23)(R﹣5)=0,
解得:R=﹣23(舍去)或R=5,
则R=5;
(3)在EF同一侧,△COB经过平移、旋转和相似变换后,这样的三角形有6个,
如图,每小图2个,顶点在圆上的三角形,如图所示:
延长EO交圆O于点D,连接DF,如图所示,
∵EF=5,直径ED=10,可得出∠FDE=30°,
∴FD=5,
则C△EFD=5+10+5=15+5,
由(2)可得C△COB=3+,
∴C△EFD:C△COB=(15+5):(3+)=5:1. 点评: 此题考查了切线的性质,垂径定理,勾股定理,相似三角形的判定与性质,含30°直角三角形的性质,平移及旋转的性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.
4.(2012?烟台)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,CF⊥AF,且CF=CE.
(1)求证:CF是⊙O的切线;
(2)若sin∠BAC=,求的值.
解答: (1)证明:连接OC.
∵CE⊥AB,CF⊥AF,CE=CF,
∴AC平分∠BAF,即∠BAF=2∠BAC.
∵∠BOC=2∠BAC,
∴∠BOC=∠BAF.
∴OC∥AF.
∴CF⊥OC.
∴CF是⊙O的切线.
(2)解:∵AB是⊙O的直径,CD⊥AB,
∴CE=ED,∠ACB=∠BEC=90°.
∴S△CBD=2S△CEB,∠BAC=∠BCE,
∴△ABC∽△CBE.
∴==(sin∠BAC)2==.
∴=.
点评: 此题考查了切线的判定、垂径定理、相似三角形的判定与性质以及圆周角定理等知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
5.(2012?梅州)如图,AC是⊙O的直径,弦BD交AC于点E.
(1)求证:△ADE∽△BCE;
(2)如果AD2=AE?AC,求证:C
显示全部