人教版八年级下册数学平行四边形知识点归纳及练习.doc
文本预览下载声明
PAGE \* MERGEFORMAT
PAGE \* MERGEFORMAT 1
平行四边形复习
1.四边形的内角和与外角和定理:
(1)四边形的内角和等于360°;
(2)四边形的外角和等于360°.
2.多边形的内角和与外角和定理:
(1)n边形的内角和等于(n-2)180°;
(2)任意多边形的外角和等于360°.
3.平行四边形的性质:
因为ABCD是平行四边形?
4.平行四边形的判定:
.
5.矩形的性质:
因为ABCD是矩形?
6. 矩形的判定:
?四边形ABCD是矩形.
7.菱形的性质:
因为ABCD是菱形
?
8.菱形的判定:
?四边形四边形ABCD是菱形.
9.正方形的性质:
因为ABCD是正方形
?
(1) (2)(3)
10.正方形的判定:
?四边形ABCD是正方形.
(3)∵ABCD是矩形
又∵AD=AB
∴四边形ABCD是正方形
11.等腰梯形的性质:
因为ABCD是等腰梯形?
12.等腰梯形的判定:
?四边形ABCD是等腰梯形
(3)∵ABCD是梯形且AD∥BC
∵AC=BD
∴ABCD四边形是等腰梯形
14.三角形中位线定理:
三角形的中位线平行第三边,并且等于它的一半.
15.梯形中位线定理:
梯形的中位线平行于两底,并且等于两底和的一半.
一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.
二 定理:中心对称的有关定理
※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.
三 公式:
1.S菱形 =ab=ch.(a、b为菱形的对角线 ,c为菱形的边长 ,h为c边上的高)
2.S平行四边形 =ah. a为平行四边形的边,h为a上的高)
3.S梯形 =(a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)
四 常识:
※1.若n是多边形的边数,则对角线条数公式是:.
2.规则图形折叠一般“出一对全等,一对相似”.
3.如图:平行四边形、矩形、菱形、正方形的从属关系.
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.
练习:
一、填空:(每小题2分,共24分)
1、对角线_____平行四边形是矩形。
2、如图⑴已知O是□ABCD的对角线交点,AC=24,BD=38,AD=14,那么△OBC的周长等于_____。
ABDC
A
B
D
C
O
⑴
A
D
B
C
F
E
⑷
A
B
D
C
E
⑶
A
B
D
C
O
⑵
3、在平行四边形ABCD中,∠C=∠B+∠D,则∠A=___,∠D=___。
4、一个平行四边形的周长为70cm,两边的差是10cm,则平行四边形各边长为____cm。
5、已知菱形的一条对角线长为12cm,面积为30cm2,则这个菱形的另一条对角线长为__________cm。
6、菱形ABCD中,∠A=60o,对角线BD长为7cm,则此菱形周长_____cm。
7、如果一个正方形的对角线长为,那么它的面积______。
8、如图2矩形ABCD的两条对角线相交于O,∠AOB=60o,AB=8,则矩形对角线的长___。
9、如图3,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5则△CDE周长___。
10、正方形的对称轴有___条
11、如图4,BD是□ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是______
12、要从一张长为40cm,宽为20cm的矩形纸片中,剪出长为18cm,宽为12cm的矩形纸片,最多能剪出______张。
二、选择题:(每小题3分,共18分)
13、在□ABCD中,∠A:∠B:∠C:∠D的值可以是( )
A、1:2:3:4 B、1:2:2:1 C、2:2:1:1 D、2:1:2:1
14、菱形和矩形一定都具有的性质是( )
A、对角线相等 B、对角线互相垂直
C、对角线互相平分 D、对角线互相平分且相等
显示全部