文档详情

322立体几何中的向量方法(二)课件新人教版(选修2-1).ppt

发布:2020-02-26约1.31千字共24页下载文档
文本预览下载声明
* * 知识要点2 例1 例1答案 例2 例2答案 3.2.2立体几何中的向量方法(二)课件 新人教版(选修2-1) ZPZ 空间“距离”问题 一、复习引入 用空间向量解决立体几何问题的“三步曲”。 (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题; (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题; (3)把向量的运算结果“翻译”成相应的几何意义。 (化为向量问题) (进行向量运算) (回到图形) 空间“距离”问题 1. 空间两点之间的距离 根据两向量数量积的性质和坐标运算, 利用公式 或 (其中 ) ,可将两点距离问题 转化为求向量模长问题 例1:如图1:一个结晶体的形状为四棱柱,其中,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60°,那么以这个顶点为端点的晶体的对角线的长与棱长有什么关系? A1 B1 C1 D1 A B C D 图1 解:如图1,设 化为向量问题 依据向量的加法法则, 进行向量运算 所以 回到图形问题 这个晶体的对角线 的长是棱长的 倍。 思考: (1)本题中四棱柱的对角线BD1的长与棱长有什么关系? (2)如果一个四棱柱的各条棱长都相等,并且以某一顶点为端点的各棱间的夹角都等于 , 那么有这个四棱柱的对角线的长可以确定棱长吗? A1 B1 C1 D1 A B C D 分析: 分析: ∴ 这个四棱柱的对角线的长可以确定棱长。 (3)本题的晶体中相对的两个平面之间的距离是多少? 设AB=1 (提示:求两个平行平面的距离,通常归结为求两点间的距离) A1 B1 C1 D1 A B C D H 分析:面面距离 点面距离 解: ∴ 所求的距离是 问题:如何求直线A1B1到平面ABCD的距离? 2、向量法求点到平面的距离: 例2 解:以点C为坐标原点建立空间直角坐标系 如图所示,设 则: 所以: 所以 与 所成角的余弦值为 例4 如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F. (1)求证:PA//平面EDB (2)求证:PB⊥平面EFD (3)求二面角C-PB-D的大小。 A B C D P E F A B C D P E F X Y Z G 解:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1 (1)证明:连结AC,AC交BD于点G,连结EG A B C D P E F X Y Z G (2)求证:PB⊥平面EFD A B C D P E F X Y Z (3)求二面角C-PB-D的大小。 A B C D P E F X Y Z D A B C G F E x y z * 知识要点2 例1 例1答案 例2 例2答案 * *
显示全部
相似文档