第一章物质的属性与光、电、磁、能量、质量要点讲解.doc
文本预览下载声明
第一篇 放射诊疗物理学基础
第一章 物质的属性与光、电、磁、能量、质量
人们很早就接触到电和磁的现象,并知道磁棒有南北两极。
最初光学主要是试图回答“人怎么能看见周围的物体”等类问题。
世纪阿拉伯人发明制作了凸透镜,16世纪末期荷兰人制造出最早的显微镜。
牛顿进行太阳光的实验,牛顿它能把太阳光分解成简单的组成部分,形成一个颜色按一定顺序排列的光分布——光谱。根据光的直线传播性,认为光是一种微粒流,微粒从光源飞出来,在均匀介质内遵从力学定律作等速直线运动,发光物体发射出以直线运动的微粒子,微粒子流冲击视网膜就引起视觉,并且用这种观点对折射和反射现象作了解释。荷兰物理学家惠更斯提出了光的波动说,推导出了光的反射和折射定律,圆满的解释了光速在光密介质中减小的原因,同时还解释了双折射现象;波动是物质运动的重要形式,广泛存在于自然界。被传递的物理量扰动或振动有多种形式,机械振动的传递构成机械波,电磁场振动的传递构成电磁波(包括光波)等。
物理学上某一物理量的扰动或振动在空间逐点传递时形成的运动称为波。
各种波的共同特性还有:①在不同介质的界面上能产生反射和折射,对各向同性介质的界面,遵守反射定律和折射定律;②通常的线性波叠加时遵守波的叠加原理;③两束或两束以上的波在一定条件下叠加时能产生干涉现象;④波在传播路径上遇到障碍物时能产生衍射现象;⑤横波能产生偏振现象。光是指所有的电磁波谱是由光子为基本粒子组成质能方程
爱因斯坦著名的质能方程式E=mc2,E表示能量,m代表质量,而c则表示光速。相对论的一个重要结果是质量与能量的关系。质量和能量是不可互换的,是建立在狭义相对论基础上,1915年他提出了广义相对论。爱因斯坦1905年6月发表的论文《关于光的产生和转化的一个启发性观点》,解释了光的本质,这也使他于1921年荣获了诺贝尔物理学奖。
质能方程式的推导
首先要认可狭义相对论的两个假设:
任一光源所发之球状光在一切惯性参照系中的速度都各向同性总为c
所有惯性参考系内的物理定律都是相同的。
如果你的行走速度是v,你在一辆以速度u行驶的公车上,那么当你与车同向走时,你对地的速度为u+v,反向时为u-v,你在车上过了1分钟,别人在地上也过了1分钟——这就是我们脑袋里的常识。也是物理学中著名的伽利略变换,整个经典力学的支柱。该理论认为空间是独立的,与在其中运动的各种物体无关,而时间是均匀流逝的,线性的,在任何观察者来看都是相同的。
而以上这个变幻恰恰与狭义相对论的假设相矛盾。
事实上,在爱因斯坦提出狭义相对论之前,人们就观察到许多与常识不符的现象。物理学家洛伦兹为了修正将要倾倒的经典物理学大厦,提出了洛伦兹变换,但他并不能解释这种现象为何发生,只是根据当时的观察事实写出的经验公式——洛伦兹变换——而它却可以通过相对论的纯理论推导出来。
然后根据这个公式又可以推倒出质速关系,也就是时间会随速度增加而变慢,质量变大,长度减小。
一个物体的实际质量为其静止质量与其通过运动多出来的质量之和。
当外力作用在静止质量为m0的自由质点上时,质点每经历位移ds,其动能的增量是dEk=F·ds,如果外力与位移同方向,则上式成为dEk=Fds,设外力作用于质点的时间为dt,则质点在外力冲量Fdt作用下,其动量增量是dp=Fdt,考虑到v=ds/dt,有上两式相除,即得质点的速度表达式为v=dEk/dp,亦即 dEk=vd(mv)=V^2dm+mvdv,把爱因斯坦的质量随物体速度改变的那个公式平方,得m^2(c^2-v^2)=m0^2c^2,对它微分求出:mvdv=(c^2-v^2)dm,代入上式得dEk=c^2dm。上式说明,当质点的速度v增大时,其质量m和动能Ek都在增加,质量的增量dm和动能的增量dEk之间始终保持dEk=c2dm所示的量值上的正比关系。当v=0时,质量m=m0,动能Ek=0,据此,将上式积分,即得∫Ek0dEk=∫m0m c2dm(从m0积分到m)Ek=mc2-m0c2
上式是相对论中的动能表达式。爱因斯坦在这里引入了经典力学中从未有过的独特见解,他把m0c2叫做物体的静止能量,把mc2叫做运动时的能量,我们分别用E0和E表示:E=mc2 , E0=m0c2。
推导:首先是狭义相对论得到
洛伦兹因子γ=1/sqrt(1 - v2/c2)
所以,运动物体的质量 M(v) = γm0=m0/(1 - v^2/c^2)
然后利用泰勒展开
1/sqrt(1 - v^2/c^2)=1+1/2*v^2/c^2+....
得到M(v)c^2 = γm0c^2=m0c^2/(1 - v^2/c^2)=m0c^2+1/2m0v^2+...
其中m0c^2
显示全部