第四章变量之间关系导学案.doc
文本预览下载声明
编制: 任牧 审核:陈明
编制: 任牧 审核:陈明 编制时间:2013--5
班级: 姓名: 小组:
PAGE
PAGE 1
第四章 变量之间的关系
§4.1 用表格表示的变量间关系
学习目标:了解变量、自变量和因变量的意义,了解可以表格表示两个变量之间的关系,培养学生分析问题的能力与归纳思维的能力。
学习重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。
学习难点:对表格所表达的两个变量关系的理解。
一、预习
1、思考:什么是变量?什么是自变量?什么是因变量?
2、课堂上,学生对概念的接受能力与老师提出概念的时间(单位:分)之间有如下关系:
时间/分
0
2
10
12
13
14
16
24
接受能力
43
47.8
59
59.8
59.9
59.8
59
47.8
(1)表中反映了哪两个变量之间的关系,哪个是自变量?哪个是因变量?
(2)根据表中的数据,你认为老师在第____分钟提出观念比较适宜?说出你的理由.
二、学习过程:
(一)要点引导
1、在一个变化过程中数值保持不变的量叫做______可以取不同数值的量叫做______,如果一个量随着另外一个量的变化而变化,那么把这个量叫做______,另一个量叫做______.
2、本节是通过______形式来表示两个变量之间的关系的.
(二)例题
例1王波学习小组利用同一块木板,测量了小车从不同高度下滑的时间.他们得到如下数据:
支撑物高
度 / 厘米
10
20
30
40
50
60
70
80
90
100
小车下滑
时间 / 秒
4.23
3.00
2.45
2.13
1.89
1.71
1.59
1.50
1.41
1.35
(1)支撑物高度为70厘米时,小车下滑时间是多少?
(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?
(3)h每增加10厘米,t的变化情况相同吗?
(4)估计当h=110时,t的值是多少,你是怎样估计的?
变式:一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表:
时间(秒)
0
1
2
3
4
5
6
7
8
9
10
速度
(米/秒)
0
0.3
1.3
2.8
4.9
7.6
11.0
14.1
18.4
24.2
28.9
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?
(3)当t每增加1秒时,v的变化情况相同吗?在哪1秒钟内,v的增加最大?
(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?
(三)拓展:
1、如图,是一个形如六边形的点阵,它的中心是一个点,算第一层;第二层每边两个点;第三层每边有三个点,依此类推:
(1)填写下表:
层数
1
2
3
4
5
6
……
该层的点数
……
所有层的点数
……
(2)每层点数是如何随层数的变化而变化的?所有层的总点数是如何随层数的变化而变化的?
(3)此题中的自变量和因变量分别是什么?
(4)写出第n层所对应的点数,以及n层的六边形点阵的总点数;
(5)如果某一层的点数是96,它是第几层?
(6)有没有一层,它的点数是100?为什么?
2、下表是明明商行某商品的销售情况,该商品原价为560元,随着不同幅度的降价(单位:元),日销量(单位:件)发生相应变化如下表:
降价(元)
5
10
15
20
25
30
35
日销量(件)
780
810
840
870
900
930
960
(1)上表反映了哪两个变量之间的关系?其中那个是自变量,哪个是因变量?
(2)每降价5元,日销量增加多少件?请你估计降价之前的日销量是多少?
(3)如果售价为500元时,日销量为多少?
§4.2 用关系式表示的变量间的关系
学习目标:1、经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。
2、能根据具体情景,用关系式表示某些变量之间的关系。
3、能根据关系式求值,初步体会自变量和因变量的数值对应关系。
学习重点:1、找问题中的自变量和因变量。
2、根据关系式找自变量和因变量之间的对应关系。
学习难点:根据关系
显示全部