文档详情

山东省龙口市诸由观镇诸由中学七年级数学上册42平方根教案1(新版)鲁教版五四制..doc

发布:2017-01-27约3.99千字共5页下载文档
文本预览下载声明
平方根 一.学生起点分析 学生在七年级上册学习 “棋盘上的故事”就认识了一种运算 “乘方”,并能熟练计算任何一个数的平方.知道正数的平方是正数,负数的平方是正数,0的平方是0. 在八年级上册第二章《实数》的学习中又认识了算术平方根的概念和表示方法,已能求非负数的算术平方根.那么这一课时进一步学习平方根.本节也为后面学习 “立方根”做基础. 二.教学任务分析 《平方根》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第二节.本节安排了两个课时完成.第一课时是了解数的算术平方根的概念,会用根号表示一个数的算术平方根.在具体的例子中抽象出概念,发展学生的抽象概括能力.本节课是第二课时,继续学习平方根的概念及其运用.并对“平方根”和“算术平方根”,“平方”和“开平方”的概念做辨析,使学生在“引导---探索---类比----发现”中发展学习数学的能力. 三.学习目标 知识目标 1.了解平方根、 开平方的概念. 2.明确算术平方根与平方根的区别和联系. 3.进一步明确平方与开平方是互逆的运算关系. 能力目标 1.经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力. 2.培养学生求同与求异的思维,通过比较提高思考问题、辨析问题的能力. 情感目标 1.在学习中互相帮助、交流、合作、培养团队的精神. 2.在学习的过程中,培养学生严谨的科学态度. 四.教学重点: 1.了解平方根开、平方根的概念. 2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根. 3.了解平方根与算术平方根的区别与联系. 教学难点: 平方根与算术平方根的区别和联系. 负数没有平方根,即负数不能进行平方根的运算. 五.教学方法 引导、探究、类比相结合 六.课前准备 ppt和flash 七.教学过程设计 本节课设计了六个教学环节:第一环节:复习旧知 引入新知;第二环节:形成概念,辨析概念;第三环节:例题和巩固练习;第四环节:课堂小结;第五环节:思维拓展;第六环节:布置作业. 第一环节:复习旧知 引入新知 (一)复习 1.什么叫算术平方根? 3的平方等于9,那么9的算术平方根就是____3______.  的平方等于 ,那么 的算术平方根就是______________.  展厅的地面为正方形,其面积49平方米,则边长___7_____米. 2.到目前为止,我们已学过哪些运算?这些运算之间的关系如何?  乘方有没有逆运算?    平方与算术平方根之间的关系? 已知折叠着的正方形ABCD面积为1,则边长为__1___.将它扩展,面  积变为原来的2倍,那么它的边长为______;若面积变为原来的3倍,则边长为_________;若面积变为原来的n倍,则边长为________. (二)复习引入 问题:平方等于9,,49的数还有吗? 意图: 这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟悉它们的互化关系.并把上节课的思考题制作成FLASH情景引入,增加动画效果. 效果:借助多媒体吸引学生的注意力,激发学生的学习兴趣. 第二环节 : 新课学习 (一)探究新知 填空: 3=(9 ) (-3)=(9 ) ( )=9 0=0  ()=()  (不存在)=-4 ()=() (二)形成概念(1) 一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.而把正的平方根叫算术平方根。 表达式为:若x=a,那么x叫做a的平方根. 记作: 例如:(±4) =16,则+4和-4都是16的平方根;即16的平方根是±4; 4是16的算术平方根. (三)探索平方与开平方的关系: 给出几组具体的数据,由平方探知开平方与平方的互逆关系. (四)概念辨析 平方根与算术平方根的联系与区别: 联系:1.包含关系:平方根包含算术平方根,算术平方根是平方根的一种. 2.只有非负数才有平方根和算术平方根. 3. 0的平方根是0,算术平方根也是0. 区别:1.个数不同:一个正数有两个平方根,但只有一个算术平方根. 2.表示法不同:平方根表示为 ,而算术平方根表示为 意图:形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系.,辨析概念 “平方根”与 “算术平方根”的区别与联系,使之与上一节课紧密联系. 效果:由于遵循
显示全部
相似文档