浅谈中学数学中的反证法.doc
文本预览下载声明
本科生毕业论文
浅谈中学数学中的反证法
院 系: 数学与计算机科学学院
专 业: 数学与应用数学
班 级: 2008级数学与应用数学(2)班
学 号: 200807110211
姓 名: 黎康乐
指导教师: 陈志恩
完成时间: 2012年5月26日
宁夏师范学院2012届本科生毕业论文
PAGE
PAGE 3
浅谈中学数学中的反证法
摘要: 数学命题的证明分直接证法和间接证法两种.在间接证法中,最常见的是反证法.虽然平时我们接触了相关方面的知识,但比较零散,对其概念、应用步骤、使用范围等没有系统的认识,并且由于数学命题的多样性、复杂性, 哪些命题适宜用反证法很难给出确切的回答.本课题通过查阅资料和自己在学习数学过程中的发现就中学数学中反证法的概念、反证法的逻辑依据、种类及步骤,解题过程中怎样由假设出发寻找矛盾、以及哪些类型的问题适宜从反证法出发进行证明的问题进行了归纳.并总结出在学习反证法的过程中应注意的三个方面,通过对以上提出的所有问题进行系统归纳,这有利于帮助学生系统的学习反证法,提高学生利用反证法进行解题的技巧从而达到预期效果.
关键词: 反证法 假设 矛盾 结论
Abstract: The mathematical proof points directly proofs proposition and indirect proof two. In indirect proof, the most common is required. Although peacetime we contact with the related knowledge, but is scattered, of the concept, application procedures, the scope of use of not understanding of the system, and the mathematical proposition the diversity and complexity, which is suitable for proposition is very difficult to give the exact with reduction to answer. This subject will be required in the middle school mathematics concept, apagoge is logical basis, types and steps, problem solving process of how a hypothesis of contradictions, and looking for what types of questions appropriate counter-evidence method from the proof of the set out on the induction. And summed up in the process of learning be should be paid attention in the three aspects, through all the questions put to the above system induce, this will help the students to learn the required system, improve the students use to problem solving skills required to achieve the expected effect.
Key words: Counter-evidence method hypothesis contradiction conclusion
目 录
TOC \o 1-3 \h \z \u 1 引言 1
2 反证法的概念、反证法的逻辑依据、种类步骤及相关实例 1
2.1 反证法的概念 1
2.2 反证法逻辑依据 2
2.3 反证法步骤 3
2.4 相关实例 3
3 中学数学中宜用反证法的适用范围 6
3.1 否定性命题 7
3.2 限定
显示全部