《高中物理10大难点强行突破》之卫星问题分析.doc
文本预览下载声明
卫星问题分析
一、难点形成原因:
卫星种类 人造卫星按运行轨道分为低轨道卫星、中高轨道卫星、地球同步卫星、地球静止卫星、太阳同步卫星、大椭圆轨道卫星和极轨道卫星;分为科学卫星、应用卫星和技术试验卫星。环绕地球在空间轨道上运行(至少一圈)的无人航天器,简称人造卫星。①、同步卫星的概念:所谓地球同步卫星,是指相对于地球静止、处在特定高度的轨道上、具有特定速度且与地球具有相同周期、相同角速度的卫星的一种。
②、同步卫星的特性:
不快不慢
不高不低
不偏不倚
证明如下:
如图4-1所示,假设卫星在轨道A上跟着地球的自转同步地匀速圆周运动,卫星运动的向心力来自地球对它的引力F引,F引中除用来作向心力的F1外,还有另一分力F2,由于F2的作用将使卫星运行轨道靠向赤道,只有赤道上空,同步卫星才可能在稳定的轨道上运行。
由 得
∴h R-R地 是一个定值。 h是同步卫星距离地面的高度
因此,同步卫星一定具有特定的位置高度和轨道半径。
③、同步卫星的科学应用:
同步卫星一般应用于通讯与气象预报,高中物理中出现的通讯卫星与气象卫星一般是指同步卫星。
(2)、一般卫星:
①、定义:
一般卫星指的是,能围绕地球做圆周运动,其轨道半径、轨道平面、运行速度、运行周期各不相同的一些卫星。
②、、卫星绕行速度与半径的关系:
由 得:即 r越大v越小
③、、卫星绕行角速度与半径的关系:
由得:即;(r越大ω越小)
④、、卫星绕行周期与半径的关系:
由得:即(r越大T越大),
(3)双星问题
两颗靠得很近的、质量可以相比的、相互绕着两者连线上某点做匀速圆周运的星体,叫做双星.双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提供.由于引力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,因两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,线速度与两子星的轨道半径成正比.
(三)运用力学规律研究卫星问题的思维基础,球体体积,表面积
③地球公转周期是一年(约365天,折合 8760 小时),自转周期是一天(约24小时)。
④月球绕地球运行周期是一个月(约28天,折合672小时;实际是27.3天)
⑤围绕地球运行飞船内的物体,受重力,但处于完全失重状态。
⑥发射卫星时,火箭要克服地球引力做功。由于地球周围存在稀薄的大气,卫星在运行过程中要受到空气阻力,动能要变小,速率要变小,轨道要降低,即半径变小。
⑦视天体的运动近似看成匀速圆周运动,其所需向心力都是来自万有引力,
即
应用时根据实际情况选用适当的公式进行分析。
⑧天体质量M、密度ρ的估算:
测出卫星围绕天体作匀速圆周运动的半径r和周期T,
由得:,(当卫星绕天体表面运动时,ρ 3π/GT2)
⑨发射同步通讯卫星一般都要采用变轨道发射的方法:点火,卫星进入停泊轨道(圆形轨道,高度200—300km),当卫星穿过赤道平面时,点火,卫星进入转移轨道(椭圆轨道),当卫星达到远地点时,点火,进入静止轨道(同步轨道)。如图4-2所示。
⑩明确三个宇宙速度:
第一宇宙速度(环绕速度):v 7.9千米/秒;(地球卫星的最小发射速度)
第二宇宙速度(脱离速度):v 11.2千米/秒;(卫星挣脱地球束缚的最小发射速度)
第三宇宙速度(逃逸速度):v 16.7千米/秒。(卫星挣脱太阳束缚的最小发射速度)
人造卫星在圆轨道上的运行速度是随着高度的增大而减小的,但是发射高度大的卫星克服地球的引力做功多,所以将卫星发射到离地球远的轨道,在地面上的发射速度就越大。
三、运用力学规律研究卫星问题的基本要点
1、必须区别开普勒行星运动定律与万有引力定律的不同
开普勒行星运动定律 开普勒第一定律:所有行星围绕太阳运动的轨道均是椭圆,太阳处在这些椭圆轨道的一个公共焦点上。
开普勒第二定律(面积定律):太阳和运动着的行星之间的联线,在相等的时间内扫过的面积总相等。 开普勒第三定律(周期定律):各个行星绕太阳公转周期的平方和它们的椭圆轨道的半长轴的立方成正比。若用r表示椭圆轨道的半长轴,用T表示行星的公转周期,则有k r3/T2是一个与行星无关的常量。 开普勒总结了第谷对天体精确观测的记录,经过辛勤地整理和计算,归纳出行星绕太阳运行的三条基本规律。开普勒定律只涉及运动学、几何学方面的内容。开普勒定律为万有引力定律的提出奠定了理论基础,此三定律也是星球之间万有引力作用的必然结果。
(2)万有引力定律
万有引力定律的内容是:
宇宙间一切物体都是相互吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们间的距离的平方成反比。
万有引力定律的公式是:
F , (G 6.67×10-11牛顿·米2/千克2,叫作万有引力恒量)。
万有引力定律的适用条件是:
严格来说公式只适用于
显示全部