酶催化反应创新.ppt
文本预览下载声明
酶催化反应 第七章习题 1.酶和细胞的固定化方法 2.微生物转化一般过程 3.非水相酶催化的特性 7.2.3 底物加入 ★水溶性底物 简单,考虑的是加入的时间和量 ★非水溶性底物 1. 细小粉末; 2.溶在与水互溶的有机溶剂(常用的有乙醇、丙酮、N,N-二甲基甲酰胺、二甲基亚砜)中; 3. 用表面活性剂来分散不溶性物质 7.2.4 微生物转化的类型 氧化 还原 氨基化 乙酰化和去乙酰化 脱氢形成双键 腈转化成酸 光学专一和立体专一性转化与拆分 7.2.5 微生物转化的应用 (1)甾体转化 (2)β-内酰胺类抗生素 (3)维生素 (4)氨基酸 (5)生物碱 (6)其他药物 (7)化学制品 7.3 非水相酶催化 传统观点:酶只有在水相中才有活性。 20世纪80年代:美国MIT的Klibanov等 用脂肪酶粉或其固定化酶在几乎无水的有机溶剂中成功地催化合成了肽、手性的醇、酯和酰胺。 有机相酶催化反应研究蓬勃兴起 7.3.1 非水相酶催化的特性 (1)增加非极性基质的溶解度; (2)使某些原本在水相不能进行的反应顺利进行,如肽的合成、酯的合成等; (3)可减少在水相容易发生的副反应,如酸酐的水解、卤化物的水解等; (4)容易分离回收; (5)无微生物污染; 缺点:酶的活性比水相中低 7.3.2 非水相酶催化的相关问题 ★在完全无水的情况下,酶是无活性的,极少量的水就会激发酶的活性;但含水量低于最适水量时,酶会失去催化活性。 ★有机溶剂可能直接与酶分子水合层中的必须水发生反应,影响酶的结构和功能,尤其是极性较强的溶剂,它可以溶解大量的水,将酶分子水合层中的必须水剥离掉,导致酶失活,相对来讲,憎水性溶剂对水的溶解能力较低,故对酶活和结构影响较小。 * * 酶是具有高度选择性的催化剂,而一般情况下的酶反应均是在温和条件下进行的(如常温、常压和中性溶液),酶的这些特性使酶能在食品、饮料和诊断工业中广泛应用。 同样这些特性使酶能在各种化合物的合成,尤其是在药物、手性中间体、特殊的聚合物和生化物质合成中显示出了潜在的吸引力。 酶作为一种特殊的催化剂正越来越受到人们的重视,对其应用研究也更趋广泛,从生物体系的酶到非生物体系的酶催化,从酶的固定化到非水相酶反应,酶的潜在能力正获得越来越多的开发和利用。 7.1 酶和细胞的固定化 7.1.1 酶和细胞的固定化方法 固定化酶:通过物理或化学的方法将溶液酶转变为在一定的空间内其运动受到完全或局部约束的一种不溶于水,但仍具活性的酶。它能以固相状态作用于底物进行催化反应。 固定化细胞:将完整的细胞限定在一定空间内活动的一种固定化生物催化剂。 注意:由于是具有催化活性的蛋白质的固定化,所以必须严格操作条件,尽可能避免酶的高级结构受到损害。 7.1.1 酶和细胞的固定化方法 ★常用方法: 吸附法、包埋法、交联法、化学共价法、逆胶束包囊法等 ★常用载体: 活性炭、多孔玻璃、纤维素、交联葡聚糖、琼脂糖、聚丙烯酰胺凝胶、海藻酸盐、明胶、合成的高分子化合物等 1) 吸附法(最古老、最简便经济) 特点: ●蛋白质与载体之间的结合力很弱 ●在很多情况下,酶的非特异性吸附常会引起部分或全部失活,且高浓度的盐溶液或底物溶液又将加速蛋白质的脱附。 吸附剂的种类(1): ◆各种矿物质和其他无机载体:高岭土、多孔玻璃、氧化铝、二氧化硅等 蛋白质结合量通常很低 ◆纤维素粉:糖苷水解酶在纤维素上有较强的吸附 ◆离子交换剂(目前最常用):羧甲基纤维素、DEAE-纤维素、DEAE-葡聚糖以及合成的离子交换剂等 作用原理:静电吸引 缺点:当离子强度增加或者介质的pH、温度改变时,这种结合发生分解。如果通过化学方法增加酶蛋白上的电荷则可使这些影响得到改善。 第一个用于工业生产的固定化酶:固定化氨基酰化酶——将氨基酰化酶吸附在DEAE-纤维素或DEAE-葡聚糖上制得。 吸附剂的种类(2): 吸附剂的种类(3): ◆蛋白质载体:胶原蛋白是最常用的 一般胶原蛋白载体预先制成膜状(胶原膜),胶原膜溶胀,然后浸入酶溶液,酶渗入膜内并被吸附,制成酶膜。 ◆生物特异性吸附剂:如,伴刀豆球蛋白A-琼脂糖,可有效地固定一些以糖蛋白为结构的酶。伴刀豆球蛋白A具有凝集红血球细胞和肿瘤细胞的作用,这种作用主要是由于伴刀豆球蛋白A能够与细胞表面上的单糖和低聚糖发生特异性结合。因此,当琼脂糖上结合有伴刀豆球蛋白A 以后,它就能够与溶液中的多糖和糖蛋白发生特异性结合。 2) 包埋法(普适性) 包埋法:将酶包裹于凝胶格子或聚合物半透膜微胶囊
显示全部